Home
Class 12
MATHS
intsqrt(5-2x+x^(2))dx...

`intsqrt(5-2x+x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{5 - 2x + x^2} \, dx\), we can follow these steps: ### Step 1: Rewrite the expression under the square root We start by rewriting the expression \(5 - 2x + x^2\) in a more manageable form. Notice that it can be rearranged as: \[ x^2 - 2x + 5 = (x - 1)^2 + 4 \] This is because: \[ (x - 1)^2 = x^2 - 2x + 1 \] Thus, \[ (x - 1)^2 + 4 = x^2 - 2x + 1 + 4 = x^2 - 2x + 5 \] ### Step 2: Substitute into the integral Now, we can substitute this back into the integral: \[ \int \sqrt{(x - 1)^2 + 4} \, dx \] ### Step 3: Use a trigonometric substitution We can use a trigonometric substitution to simplify the integral. Let: \[ x - 1 = 2\tan(\theta) \quad \Rightarrow \quad dx = 2\sec^2(\theta) \, d\theta \] The expression under the square root becomes: \[ \sqrt{(2\tan(\theta))^2 + 4} = \sqrt{4\tan^2(\theta) + 4} = \sqrt{4(\tan^2(\theta) + 1)} = 2\sec(\theta) \] ### Step 4: Substitute into the integral Now substitute these into the integral: \[ \int \sqrt{(x - 1)^2 + 4} \, dx = \int 2\sec(\theta) \cdot 2\sec^2(\theta) \, d\theta = 4 \int \sec^3(\theta) \, d\theta \] ### Step 5: Integrate \(\sec^3(\theta)\) The integral of \(\sec^3(\theta)\) is known: \[ \int \sec^3(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln | \sec(\theta) + \tan(\theta) | + C \] Thus, \[ 4 \int \sec^3(\theta) \, d\theta = 2 \sec(\theta) \tan(\theta) + 2 \ln | \sec(\theta) + \tan(\theta) | + C \] ### Step 6: Substitute back to \(x\) Now we need to substitute back \(\theta\) in terms of \(x\): - From \(x - 1 = 2\tan(\theta)\), we have \(\tan(\theta) = \frac{x - 1}{2}\). - Therefore, \(\sec(\theta) = \sqrt{1 + \tan^2(\theta)} = \sqrt{1 + \left(\frac{x - 1}{2}\right)^2} = \sqrt{\frac{(x - 1)^2 + 4}{4}} = \frac{\sqrt{(x - 1)^2 + 4}}{2}\). Thus, \[ \tan(\theta) = \frac{x - 1}{2} \quad \text{and} \quad \sec(\theta) = \frac{\sqrt{(x - 1)^2 + 4}}{2} \] ### Final Result Substituting these back into our integral, we have: \[ \int \sqrt{5 - 2x + x^2} \, dx = 2 \cdot \frac{\sqrt{(x - 1)^2 + 4}}{2} \cdot \frac{x - 1}{2} + 2 \ln \left| \frac{\sqrt{(x - 1)^2 + 4}}{2} + \frac{x - 1}{2} \right| + C \] Simplifying gives: \[ = (x - 1) \sqrt{(x - 1)^2 + 4} + 2 \ln \left| \sqrt{(x - 1)^2 + 4} + (x - 1) \right| + C \]

To solve the integral \(\int \sqrt{5 - 2x + x^2} \, dx\), we can follow these steps: ### Step 1: Rewrite the expression under the square root We start by rewriting the expression \(5 - 2x + x^2\) in a more manageable form. Notice that it can be rearranged as: \[ x^2 - 2x + 5 = (x - 1)^2 + 4 \] This is because: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

intsqrt(2ax -x^(2))dx

intsqrt(1-4x-x^(2))dx

intsqrt(2ax-x^(2))dx

intsqrt(2x-x^(2))dx

intsqrt(8+2x-x^(2))dx=

intsqrt(2x^(2)-3)dx

intsqrt(4-9x^(2))dx

intsqrt(4-x^(2))dx

Evaluate : intsqrt(4-x-x^(2))dx .

intsqrt(2x^(2)+3x+4)dx