Home
Class 12
MATHS
int (cos 5x + cos 4x)/(1-2cos3x) dx...

`int (cos 5x + cos 4x)/(1-2cos3x) dx`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`I = int(cos5x+cos4x)/(1-2cos3x)dx=int(2cos'(9x)/(2).cos'x/2)/(1-2(2cos^(2)'(3x)/(2)-1))dx`
`[:' cosC + cosD = 2cos'(C-D)/(2).cos'(C-D)/(2) "and" cos2x = 2cos^(2)x-1]`
`:. I= -int(2cos'(9x)/2.cos'x/2)/(3-4cos^(2)'(3x)/(2))dx=-int(2cos'(9x)/(2).cos'(x)/(2))/(4cos^(2)'(3x)/(2)-3)dx`
`=-int(2cos'(9x)/(2).cos'(x)/(2).cos'(3x)/(2))/(4cos^(3)'(3x)/(2)-3cos'(3x)/(2)).dx` [multiply and divide by `cos= (3x)/(2)`]
`=-int(2cos'(9x)/(2).cos'(3x)/(2))/(cos3.'(3x)/(2))dx = -int2cos'(3x)/(2).cos'x/2dx`
` =-int{cos((3x)/(2)+ x/2)+cos((3x)/(2)-x/2)}dx`
`-int(cos2x+cosx)dx`
`=-[(sin2x)/(2)+sinx]+C`
`=-1/2 sin2x- sinx + C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

The value of int(cos 5x+cos 4x)/(1-2 cos 3 x)dx , is

int(cos5x+cos4x)/(1-2cos3x)dx

int(cos x)/(1-cos x)dx

If int(cos5x+cos4x)/(1-2cos3x)dx=A(-sin2x)+B sin x+c then A+B=

int cos x cos 3x dx

The value of int (cos 7x-cos 8x)/(1+2 cos 5x)dx , is

If int(cos 6x+cos 9x)/(1-2 cos 5x)dx=-(sin 4x)/(k)-sin x+C , then the value of k is .......... .

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)