Home
Class 12
MATHS
int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2...

`int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx, \] we can start by rewriting the numerator using the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2). \] Here, let \( a = \sin^2 x \) and \( b = \cos^2 x \). Thus, we have: \[ \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x). \] Since \( \sin^2 x + \cos^2 x = 1 \), we can simplify the expression: \[ \sin^6 x + \cos^6 x = \sin^4 x - \sin^2 x \cos^2 x + \cos^4 x. \] Now substituting this back into the integral, we get: \[ I = \int \frac{\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x}{\sin^2 x \cos^2 x} \, dx. \] We can separate this into three integrals: \[ I = \int \frac{\sin^4 x}{\sin^2 x \cos^2 x} \, dx - \int \frac{\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx + \int \frac{\cos^4 x}{\sin^2 x \cos^2 x} \, dx. \] This simplifies to: \[ I = \int \frac{\sin^2 x}{\cos^2 x} \, dx - \int 1 \, dx + \int \frac{\cos^2 x}{\sin^2 x} \, dx. \] Now, we can rewrite the integrals: 1. The first integral becomes \(\int \tan^2 x \, dx\). 2. The second integral is simply \(-\int 1 \, dx = -x\). 3. The third integral becomes \(\int \cot^2 x \, dx\). Using the identities: \[ \tan^2 x = \sec^2 x - 1 \quad \text{and} \quad \cot^2 x = \csc^2 x - 1, \] we can integrate each part: 1. \(\int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x + C_1\). 2. \(-\int 1 \, dx = -x\). 3. \(\int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = -\cot x - x + C_2\). Combining all these results, we have: \[ I = (\tan x - x) - x + (-\cot x - x) + C, \] which simplifies to: \[ I = \tan x - \cot x - 3x + C. \] Thus, the final result of the integral is: \[ \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx = \tan x - \cot x - 3x + C. \]

To solve the integral \[ I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx, \] we can start by rewriting the numerator using the identity for the sum of cubes: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int(sin^(6)x+cos^(6)x)/(sin^(2)x*cos^(2)x)dx

Evaluate int (sin^(6) x + cos^(6)x)/(sin^(2)x cos^(2)x) dx

int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=

int(3sin^(3)x+cos^(3)x)/(sin^(2)xcos^(2)x)dx=

int(dx)/(sin^(2)xcos^(2)x)

Evaluate: ( i int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx (ii) int(5cos^(3)x+6sin^(3)x)/(2sin^(2)x cos^(2)x)dx

int(1)/(sin^(2)xcos^(2)x)dx

int(sin^(6)x+cos^(6)x)/(sin^(2)2x)dx=

int(dx)/(sin^(2)xcos^(2)x

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to