Home
Class 12
MATHS
int 1/(xsqrt(x^4-1))dx...

`int 1/(xsqrt(x^4-1))dx`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let ` I= int(dx)/(xsqrt(x^(4)-1))`
Put `x^(2) = sec theta rArr theta = sec^(-1)x^(2)`
`rArr 2x dx = sec theta. tan theta d theta`
`I = 1/2 int(sec theta. tan theta)/(sec theta tan theta) d theta = 1/2 int d theta = 1/2 theta + C`
`= 1/2 sec^(-1)(x^(-2)) + C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int 1/(xsqrt(x^2-1)) dx =

int(1)/(xsqrt(x-1))dx=

(i) int 1/(xsqrt(x-1))dx (ii) int 1/((x+2)sqrt(x+3)) dx

int (1)/(xsqrt(x))dx

Evaluate the following indefinite integrals : (i) intsqrt(a^(2)-x^(2))dx (ii) int(1)/(sqrt(49+x^(2)))dx (iii) int(1)/(xsqrt(x^(6)-1))dx (iv) intsqrt((1+x)/(1-x))dx (v) intsqrt((x^(2009))/(2x^(2008)-x^(2009)))dx (vi) int(1)/(sqrt((x-4)(x-5)))dx

Evaluate int1/(xsqrt(1+x^3))dx

Evaluate int1/(xsqrt(1+x^3))dx

int xsqrt(x^(4)+9) dx