Home
Class 12
MATHS
int(0)^(2)e^(x)\ dx...

`int_(0)^(2)e^(x)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} e^{x} \, dx \) using the limit of sums, we can follow these steps: ### Step 1: Define the Integral as a Limit of Sums The integral from \( a \) to \( b \) of a function \( f(x) \) can be expressed as: \[ \int_{a}^{b} f(x) \, dx = \lim_{h \to 0} \sum_{i=0}^{n-1} f(a + ih) \cdot h \] where \( n = \frac{b-a}{h} \). ### Step 2: Set Up the Parameters For our integral \( \int_{0}^{2} e^{x} \, dx \): - \( a = 0 \) - \( b = 2 \) - Therefore, \( n = \frac{2-0}{h} = \frac{2}{h} \) ### Step 3: Write the Function in the Limit of Sums The function \( f(x) = e^{x} \). Thus, we can write: \[ \int_{0}^{2} e^{x} \, dx = \lim_{h \to 0} \sum_{i=0}^{n-1} e^{0 + ih} \cdot h = \lim_{h \to 0} \sum_{i=0}^{\frac{2}{h}-1} e^{ih} \cdot h \] ### Step 4: Evaluate the Sum The sum can be expressed as: \[ \sum_{i=0}^{\frac{2}{h}-1} e^{ih} = e^{0} + e^{h} + e^{2h} + \ldots + e^{\left(\frac{2}{h}-1\right)h} \] This is a geometric series with: - First term \( a = 1 \) (since \( e^{0} = 1 \)) - Common ratio \( r = e^{h} \) - Number of terms \( n = \frac{2}{h} \) The sum of a geometric series is given by: \[ S_n = a \frac{r^n - 1}{r - 1} \] Substituting our values: \[ S = 1 \cdot \frac{(e^{h})^{\frac{2}{h}} - 1}{e^{h} - 1} = \frac{e^{2} - 1}{e^{h} - 1} \] ### Step 5: Substitute Back into the Limit Now substituting back into the limit: \[ \int_{0}^{2} e^{x} \, dx = \lim_{h \to 0} h \cdot \frac{e^{2} - 1}{e^{h} - 1} \] ### Step 6: Simplify Using the Limit Property Using the property that \( \lim_{h \to 0} \frac{h}{e^{h} - 1} = 1 \): \[ \int_{0}^{2} e^{x} \, dx = (e^{2} - 1) \cdot \lim_{h \to 0} \frac{h}{e^{h} - 1} = e^{2} - 1 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} e^{x} \, dx = e^{2} - 1 \] ---

To solve the integral \( \int_{0}^{2} e^{x} \, dx \) using the limit of sums, we can follow these steps: ### Step 1: Define the Integral as a Limit of Sums The integral from \( a \) to \( b \) of a function \( f(x) \) can be expressed as: \[ \int_{a}^{b} f(x) \, dx = \lim_{h \to 0} \sum_{i=0}^{n-1} f(a + ih) \cdot h \] where \( n = \frac{b-a}{h} \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)x*e^(2x)dx

int_(0)^(10)e^(2x)dx

Evaluate : (i) int_(0)^(2)e^(x//2)dx (ii) int_(2)^(4)(x)/((x^(2)+1))dx (iii) int_(0)^(1)cos^(-1)xdx

int_(0)^(1)e^(2x+3)dx

What is int_(0)^(2) e^(ln) x dx equal to ?

Evaluate : int_(0)^(4)x.e ^(2x) dx

Evaluate int_(0)^(1)e^(2-3x)dx as a limit of a sum.

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx