Home
Class 12
MATHS
int(0)^(1) (dx)/(e^(x)+e^(-x))...

`int_(0)^(1) (dx)/(e^(x)+e^(-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression in the denominator: \[ e^{x} + e^{-x} = \frac{e^{2x} + 1}{e^{x}} \] Thus, we can rewrite the integral as: \[ \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} = \int_{0}^{1} \frac{e^{x}}{e^{2x} + 1} \, dx \] ### Step 2: Substitute \( t = e^{x} \) Now, we perform the substitution \( t = e^{x} \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{t} \] When \( x = 0 \), \( t = e^{0} = 1 \), and when \( x = 1 \), \( t = e^{1} = e \). Therefore, the limits of integration change from \( 0 \) to \( 1 \) into \( 1 \) to \( e \). ### Step 3: Rewrite the integral in terms of \( t \) Substituting \( t \) into the integral, we have: \[ \int_{1}^{e} \frac{1}{t^2 + 1} \, dt \] ### Step 4: Evaluate the integral The integral \( \int \frac{1}{t^2 + 1} \, dt \) is known to be: \[ \tan^{-1}(t) \] Thus, we can evaluate the definite integral: \[ \left[ \tan^{-1}(t) \right]_{1}^{e} = \tan^{-1}(e) - \tan^{-1}(1) \] ### Step 5: Substitute the values We know that \( \tan^{-1}(1) = \frac{\pi}{4} \), so we have: \[ \tan^{-1}(e) - \frac{\pi}{4} \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} = \tan^{-1}(e) - \frac{\pi}{4} \]

To solve the integral \( \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression in the denominator: \[ e^{x} + e^{-x} = \frac{e^{2x} + 1}{e^{x}} \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(e^(x) +e^(-x)) dx

Evaluate int_(0)^(oo)(dx)/(e^(x)+e^(-x))

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

If int_(0)^(1)(1)/(e^(x)+e^(-x))dx = tan^(-1)p , then : p =

int_(0)^(oo)(2)/(e^(x)+e^(-x))dx

The value of int_(0) ^(1) (dx )/( e ^(x) + e) is equal to

int_(0)^(1) x e^(x) dx=1

int_(0)^(1)(e^(x)dx)/(1+e^(x))

The value of int_(0)^(1) "max" (e^(x) , e^(1-x) ) dx equals

int_(0)^(1)(e^(-x))/(1+e^(-x))dx