Home
Class 12
MATHS
Evaluate : intdx/sqrt((x-1)(2-x)) by the...

Evaluate : `intdx/sqrt((x-1)(2-x))` by the substitution `x=1+sin^2theta`. Hence, find the value of `int_1^2dx/sqrt((x-1)(2-x))`

A

`pi/2`

B

`pi/4`

C

`pi`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I = int_(1)^(2) (dx)/(sqrt((x-1)(2-x))) = int_(1)^(2)(dx)/(sqrt(2x-x^(2) - 2 + x))`
`= int_(1)^(2) (dx)/(sqrt(-(x^(2) - 3x + 2)))`
`= int_(1)^(2)(dx)/(sqrt(-[x^(2) - 2.(3)/(2)x+ ((3)/(2))^(2)+ 2 - (9)/(4)]))`
`= int_(1)^(2) (dx)/(sqrt(-{(x - (3)/(2))^(2) - ((1)/(2))^(2)}))`
`= int_(1)^(2) (dx)/(sqrt(((1)/(2))^(2)- (x - (3)/(2))^(2))) = [sin^(-1)((x - (3)/(2))/((1)/(2)))]_(1)^(2)`
= `[sin^(-1)(2x - 3)]_(1)^(2) = sin^(-1)1 - sin^(-1)(-1)`
= `(pi)/(2) + (pi)/(2) " " [therefore sin'(pi)/(2) = 1 "and sin" '(-theta) = - sin theta ]`
= `pi`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int(dx)/(sqrt((x-1)(2-x))) by the substitution x=1+sin^(2)theta .Hence,find the value of int_(1)^(2)(dx)/(sqrt((x-1)(2-x)))

Evaluate: intdx/sqrt ((x-1)(x-2))

Evaluate: intdx/sqrt (e^(2x)-1)

Evaluate: intdx/sqrt(1+x-x^2)

Evaluate: intdx/(x+sqrt(x^2-x+1))

Evaluate: intdx/(sqrt(x^2+x+1))

Evaluate intdx/sqrt (1-2x-x^2)

Evaluate: int1/(sqrt(5x^2-2x))\ dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: intdx/(x^2sqrt (1+x^2))