Home
Class 12
MATHS
int(0)^(pi) x sin x cos^(2)x\ dx...

`int_(0)^(pi) x sin x cos^(2)x\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \sin x \cos^2 x \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In this case, we set \( a = \pi \). Thus, we can write: \[ I = \int_{0}^{\pi} x \sin x \cos^2 x \, dx = \int_{0}^{\pi} (\pi - x) \sin(\pi - x) \cos^2(\pi - x) \, dx \] Using the trigonometric identities, we know: \[ \sin(\pi - x) = \sin x \quad \text{and} \quad \cos(\pi - x) = -\cos x \] However, since we are squaring the cosine term, we have: \[ \cos^2(\pi - x) = \cos^2 x \] Thus, substituting these into the integral gives us: \[ I = \int_{0}^{\pi} (\pi - x) \sin x \cos^2 x \, dx \] Now, we can expand this: \[ I = \int_{0}^{\pi} \pi \sin x \cos^2 x \, dx - \int_{0}^{\pi} x \sin x \cos^2 x \, dx \] This simplifies to: \[ I = \pi \int_{0}^{\pi} \sin x \cos^2 x \, dx - I \] Adding \( I \) to both sides results in: \[ 2I = \pi \int_{0}^{\pi} \sin x \cos^2 x \, dx \] Thus, we can express \( I \) as: \[ I = \frac{\pi}{2} \int_{0}^{\pi} \sin x \cos^2 x \, dx \] Next, we need to evaluate the integral \( \int_{0}^{\pi} \sin x \cos^2 x \, dx \). We can use the substitution \( t = \cos x \), which gives \( dt = -\sin x \, dx \). The limits change as follows: - When \( x = 0 \), \( t = \cos(0) = 1 \) - When \( x = \pi \), \( t = \cos(\pi) = -1 \) Thus, the integral becomes: \[ \int_{0}^{\pi} \sin x \cos^2 x \, dx = -\int_{1}^{-1} t^2 \, dt = \int_{-1}^{1} t^2 \, dt \] Now, we compute: \[ \int_{-1}^{1} t^2 \, dt = \left[ \frac{t^3}{3} \right]_{-1}^{1} = \frac{1^3}{3} - \frac{(-1)^3}{3} = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \] Substituting this back into our expression for \( I \): \[ I = \frac{\pi}{2} \cdot \frac{2}{3} = \frac{\pi}{3} \] Thus, the final result is: \[ \boxed{\frac{\pi}{3}} \]

To solve the integral \( I = \int_{0}^{\pi} x \sin x \cos^2 x \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In this case, we set \( a = \pi \). Thus, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi)x*sin x*cos^(4)x*dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

I= int_0^(pi)(x sin x)/(1+cos^(2)x)dx

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(2 pi)x(sin^(2)x cos^(2)x)dx=

int _(0)^(pi//2) x sin^(2) x cos^(2) x dx is equal to