Home
Class 12
MATHS
inte^(tan^-1x)(1+x/(1+x^2))dx...

`inte^(tan^-1x)(1+x/(1+x^2))dx`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `I = inte^(tan^(-1)x) ((1+x+x^(2))/(1+x^(2)))dx`
`=inte^(tan^(-1)x)((1+x^(2))/(1+x^(2))+(x)/(1+x^(2)))dx`
`= inte^(tan^(-1)).^(x)dx + int (xe^(tan^(-1)x))/(1+x^(2))dx`
`I = I_(1) + I_(2)`
Now, `I_(2) = int (xe^(tan^(-1)x))/(1+x^(2)) =dx`
Put `tan^(-x) = t rArr x = tant `
` rArr 1/(1+x^(2)) dx`
`rArr 1/(1+x^(2)) dx = dt`
` :. I = int underset(I)tant.underset(II)(e^(t)dt)`
`= tan t.e^(t)-int sec^(2)t.e^(t)dt+C`
` =tant.e^(t) - int(1+tan^(2)t) e^(t) dt + C [:' sec^(2) theta = 1 + tan^(2)theta]`
`I_(2)= tant.e^(t)-int(1+x^(2))(e^(tan^(-1)x))/(1+x^(2))dx + C`
`I_(2) = tant. e^(t) -inte^(tan^(-t))dx + C`
`:. I = inte^(tan^(-1)).^(x)dx + tant.e^(t) - inte^(tan^(-1)).^(x)dx + C`
`= tant.e^(t) + C`
`= xe^(tan^(-1)x)+ C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

inte^x(tan^-1x+1/(1+x^(2)))dx

Evaluate: inte^x(tan^-1x+1/(1+x^2))dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate inte^(a tan^-1x)/(1+x^2)dx

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

Prove that int e^x (tan^-1 x+1/(1+x^2)) dx=e^x tan^-1x+c

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int (tan^(-1)x)^(2)/(1+x^2)dx

int(tan^(-1)x)/(1+x^(2)) dx=?