Home
Class 12
MATHS
int(0)^(pi) x log sinx\ dx...

`int_(0)^(pi) x log sinx\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \log(\sin x) \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals Let \( I = \int_{0}^{\pi} x \log(\sin x) \, dx \). Now, we can change the variable by letting \( x = \pi - t \). Then, \( dx = -dt \) and the limits change as follows: - When \( x = 0 \), \( t = \pi \) - When \( x = \pi \), \( t = 0 \) Thus, we have: \[ I = \int_{\pi}^{0} (\pi - t) \log(\sin(\pi - t)) (-dt) = \int_{0}^{\pi} (\pi - t) \log(\sin t) \, dt \] ### Step 2: Simplify the integral Using the property \( \sin(\pi - t) = \sin t \), we can rewrite the integral as: \[ I = \int_{0}^{\pi} (\pi - t) \log(\sin t) \, dt \] Now, we can expand this integral: \[ I = \int_{0}^{\pi} \pi \log(\sin t) \, dt - \int_{0}^{\pi} t \log(\sin t) \, dt \] ### Step 3: Combine the integrals Notice that the second integral is just \( I \): \[ I = \pi \int_{0}^{\pi} \log(\sin t) \, dt - I \] ### Step 4: Solve for \( I \) Now, we can add \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} \log(\sin t) \, dt \] Thus, \[ I = \frac{\pi}{2} \int_{0}^{\pi} \log(\sin t) \, dt \] ### Step 5: Evaluate the integral \( \int_{0}^{\pi} \log(\sin t) \, dt \) We can use the known result: \[ \int_{0}^{\pi} \log(\sin t) \, dt = -\pi \log(2) \] ### Step 6: Substitute back into the equation for \( I \) Substituting this result back into our equation for \( I \): \[ I = \frac{\pi}{2} (-\pi \log(2)) = -\frac{\pi^2}{2} \log(2) \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\pi} x \log(\sin x) \, dx = -\frac{\pi^2}{2} \log(2) \] ---

To solve the integral \( I = \int_{0}^{\pi} x \log(\sin x) \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi)x log sin x dx is

The value of int_(0)^(pi//2) log (sinx) dx is

int_(0)^(pi)log sin^(2)x dx=

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

The integral int_(0)^(pi) x f(sinx )dx is equal to