Home
Class 12
MATHS
inttan^(-1)sqrt(x)\ dx is equal to...

`inttan^(-1)sqrt(x)\ dx` is equal to

A

`(x+1)tan^(-1) sqrt(x) - sqrt(x) + C`

B

`x tan^(-1) sqrt(x) - sqrt(x) + C`

C

`sqrt(x) - x tan^(-1) sqrt(x) + C`

D

`sqrt(x) - (x+1)tan^(-1)sqrt(x) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(\sqrt{x}) \, dx \), we will use integration by parts. Let's denote: \[ I = \int \tan^{-1}(\sqrt{x}) \, dx \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(\sqrt{x}) \) - \( dv = dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we need to find \( du \) and \( v \): - To find \( du \), we use the derivative of \( \tan^{-1}(x) \): \[ du = \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{1}{2\sqrt{x}} \, dx = \frac{1}{2\sqrt{x}(1+x)} \, dx \] - Integrating \( dv \): \[ v = x \] ### Step 3: Apply Integration by Parts Formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = x \tan^{-1}(\sqrt{x}) - \int x \cdot \frac{1}{2\sqrt{x}(1+x)} \, dx \] ### Step 4: Simplify the Integral The integral becomes: \[ I = x \tan^{-1}(\sqrt{x}) - \frac{1}{2} \int \frac{x}{\sqrt{x}(1+x)} \, dx \] \[ = x \tan^{-1}(\sqrt{x}) - \frac{1}{2} \int \frac{\sqrt{x}}{1+x} \, dx \] ### Step 5: Substitute \( x = t^2 \) Let \( x = t^2 \), then \( dx = 2t \, dt \) and \( \sqrt{x} = t \): \[ I = t^2 \tan^{-1}(t) - \frac{1}{2} \int \frac{t}{1+t^2} \cdot 2t \, dt \] \[ = t^2 \tan^{-1}(t) - \int \frac{t^2}{1+t^2} \, dt \] ### Step 6: Simplify the Integral The integral can be simplified: \[ \int \frac{t^2}{1+t^2} \, dt = \int \left( 1 - \frac{1}{1+t^2} \right) dt = \int dt - \int \frac{1}{1+t^2} dt \] \[ = t - \tan^{-1}(t) \] ### Step 7: Substitute Back Now substituting back: \[ I = t^2 \tan^{-1}(t) - \left( t - \tan^{-1}(t) \right) + C \] Substituting \( t = \sqrt{x} \): \[ I = x \tan^{-1}(\sqrt{x}) - \left( \sqrt{x} - \tan^{-1}(\sqrt{x}) \right) + C \] \[ = x \tan^{-1}(\sqrt{x}) - \sqrt{x} + \tan^{-1}(\sqrt{x}) + C \] ### Final Result Combining the terms gives: \[ I = (x + 1) \tan^{-1}(\sqrt{x}) - \sqrt{x} + C \]

To solve the integral \( \int \tan^{-1}(\sqrt{x}) \, dx \), we will use integration by parts. Let's denote: \[ I = \int \tan^{-1}(\sqrt{x}) \, dx \] ### Step 1: Choose \( u \) and \( dv \) Let: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)+1)sqrt(x+1)dx is equal to

What is inttan^(-1)(secx+tanx) dx equal to ?

The value of inttan^(3)2xsec2x dx is equal to:

int tan^(-1){sqrt(sqrt(x)-1)}dx is equal to

int sqrt(e^(x)-1)dx is equal to

inttan^-1(x/sqrt(1+x^2))dx

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int_(0)^(1)sqrt(x(1-x))dx equals

int(a^(sqrt(x)))/(sqrt(x))dx is equal to