Home
Class 12
MATHS
int(x^9)/((4x^2+1)^6) dx is equal to...

`int(x^9)/((4x^2+1)^6) dx` is equal to

A

`1/(5x) (4+(1)/(x^(2)))^(-5) + C`

B

`1/(5) (4+(1)/(x^(2)))^(-5) + C`

C

`1/(10x) (1+4x)^(-5) + C`

D

`1/(10)(1/(x^(2))+4)^(-5) + C`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `I = int (x^(9))/((4x^(2) + 1)) dx = int (x^(9))/(x^(12)(4+1/(x^(2)))^(6))dx`
` = int (dx)/(x^(3)(4+1/x^(2))^(6))`
Put `4 + 1/(x^(2)) = t rArr (-2)/(x^(3)) dx = dt`
`rArr 1/(x^(3)) dx = - 1/2 dt`
`:. I = - (1)/(2) int (dt)/(t^(6)) = - 1/2 [(t^(-6+1))/(-6+1)]+ C`
` = 1/10 [(1)/(t^(5))] + C = 1/10 (4+(1)/(x^(2)))^(-5) + C`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(9x-4x^(2)))dx is equal to

The value of int(x^(2))/(1+x^(6))dx is equal to

int(dx)/(4x^(2)-9)

int(dx)/(4x^(2)-9)

int(dx)/((9+4x^(2)))dx=?

int(x^(2))/(x^(6)+1)dx is equal to : "

int(x^(4))/(x^(2)+1)dx is equal to

int(1)/(x^(2)-9)dx is equal to

int(2x^(3)-1)/(x^(4)+x)dx is equal to