Home
Class 12
MATHS
int(x+sinx)/(1+cosx)\ dx is equal to...

`int(x+sinx)/(1+cosx)\ dx` is equal to

A

` log|1+cosx|+C`

B

`log|x+sinx|+C`

C

`x-tan'(x)/(2)+C`

D

`x.tan'x/2 + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x + \sin x}{1 + \cos x} \, dx \), we can break it down into two separate integrals: \[ \int \frac{x + \sin x}{1 + \cos x} \, dx = \int \frac{x}{1 + \cos x} \, dx + \int \frac{\sin x}{1 + \cos x} \, dx \] ### Step 1: Solve \( \int \frac{x}{1 + \cos x} \, dx \) To solve \( \int \frac{x}{1 + \cos x} \, dx \), we can use integration by parts. Let: - \( u = x \) (which means \( du = dx \)) - \( dv = \frac{1}{1 + \cos x} \, dx \) To find \( v \), we need to integrate \( \frac{1}{1 + \cos x} \). We can use the identity \( 1 + \cos x = 2 \cos^2(\frac{x}{2}) \): \[ \int \frac{1}{1 + \cos x} \, dx = \int \frac{1}{2 \cos^2(\frac{x}{2})} \, dx = \frac{1}{2} \int \sec^2(\frac{x}{2}) \, dx \] The integral of \( \sec^2(\frac{x}{2}) \) is \( 2 \tan(\frac{x}{2}) \): \[ v = \tan\left(\frac{x}{2}\right) \] Now applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ \int \frac{x}{1 + \cos x} \, dx = x \tan\left(\frac{x}{2}\right) - \int \tan\left(\frac{x}{2}\right) \, dx \] ### Step 2: Solve \( \int \tan\left(\frac{x}{2}\right) \, dx \) The integral of \( \tan\left(\frac{x}{2}\right) \) can be solved using the identity: \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} \] Using the substitution \( u = \frac{x}{2} \), we have \( dx = 2 \, du \): \[ \int \tan\left(\frac{x}{2}\right) \, dx = 2 \int \tan(u) \, du = -2 \ln|\cos(u)| + C = -2 \ln|\cos\left(\frac{x}{2}\right)| + C \] ### Step 3: Combine Results Now we can combine the results from Steps 1 and 2: \[ \int \frac{x}{1 + \cos x} \, dx = x \tan\left(\frac{x}{2}\right) + 2 \ln|\cos\left(\frac{x}{2}\right)| + C \] ### Step 4: Solve \( \int \frac{\sin x}{1 + \cos x} \, dx \) For the second integral, we can use the substitution \( u = 1 + \cos x \), which gives \( du = -\sin x \, dx \): \[ \int \frac{\sin x}{1 + \cos x} \, dx = -\int \frac{1}{u} \, du = -\ln|u| + C = -\ln|1 + \cos x| + C \] ### Final Result Combining both parts, we have: \[ \int \frac{x + \sin x}{1 + \cos x} \, dx = x \tan\left(\frac{x}{2}\right) + 2 \ln|\cos\left(\frac{x}{2}\right)| - \ln|1 + \cos x| + C \]

To solve the integral \( \int \frac{x + \sin x}{1 + \cos x} \, dx \), we can break it down into two separate integrals: \[ \int \frac{x + \sin x}{1 + \cos x} \, dx = \int \frac{x}{1 + \cos x} \, dx + \int \frac{\sin x}{1 + \cos x} \, dx \] ### Step 1: Solve \( \int \frac{x}{1 + \cos x} \, dx \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

The value of inte^(x)[(1+sinx)/(1+cosx)]dx is equal to

int(sinx)/((1+cosx))dx

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(1)/(cosx-sinx)dx is equal to

int(sinx)/(sinx-cosx)dx=

int 1/(sinx(1+2cosx)) dx