Home
Class 12
MATHS
Prove that : int0^(pi/2)sqrt(1-sin2x)dx=...

Prove that : `int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)`

A

`2sqrt(2)`

B

`2(2+sqrt(2))`

C

`2`

D

`2(sqrt(2)-1)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I = int_(0)^(pi//2) sqrt(1-sin2x)d`
` int_(0)^(pi//4) sqrt((cosx - sinx)^(2)) dx + int_(pi//4)^(pi//2) sqrt((sinx-cosx)^(2))dx`
`=[sinxcosx]_(0)^(pi//4)+[-cosx-sinx]_(pi//4)^(pi//2)`
`= 1/(sqrt(2)) + 1/(sqrt(2)) - 0 - 1 + (-0-1+1/(sqrt(2)) + (1)/(sqrt(2)))`
`= 2sqrt(2)-2=2(sqrt(2)-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sqrt(1-sin x)dx

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int sqrt(1+sin2x)dx

int sqrt(1+sin2x)dx

int sqrt(1+sin2x)dx

int sqrt(1+sin2x)dx

int_(0)^(pi//2)sqrt(1+cos2x)dx=?

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

int_(0)^(pi//2) sqrt(1- cos 2x) dx