Home
Class 12
MATHS
int (x+3)/(x+4)^(2)e^(x)\ dx is equal to...

`int (x+3)/(x+4)^(2)e^(x)\ dx` is equal to

A

`e^(x)((1)/(x+4))+C`

B

`e^(-x)((1)/(x+4))+C`

C

`e^(-x)((1)/(x-4))+C`

D

`e^(2x)((1)/(x-4))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x+3}{(x+4)^2} e^x \, dx \), we can follow these steps: ### Step 1: Rewrite the Numerator We can rewrite the numerator \( x + 3 \) as \( (x + 4) - 1 \). This allows us to separate the integral into two parts: \[ \int \frac{x+3}{(x+4)^2} e^x \, dx = \int \frac{(x+4) - 1}{(x+4)^2} e^x \, dx \] ### Step 2: Split the Integral Now we can split the integral into two simpler integrals: \[ \int \frac{(x+4)}{(x+4)^2} e^x \, dx - \int \frac{1}{(x+4)^2} e^x \, dx \] This simplifies to: \[ \int \frac{1}{x+4} e^x \, dx - \int \frac{1}{(x+4)^2} e^x \, dx \] ### Step 3: Solve the First Integral Now we will solve the first integral \( \int \frac{1}{x+4} e^x \, dx \). We can use integration by parts here. Let: - \( u = \frac{1}{x+4} \) so that \( du = -\frac{1}{(x+4)^2} dx \) - \( dv = e^x dx \) so that \( v = e^x \) Using integration by parts \( \int u \, dv = uv - \int v \, du \): \[ \int \frac{1}{x+4} e^x \, dx = \frac{e^x}{x+4} - \int e^x \left(-\frac{1}{(x+4)^2}\right) dx \] This gives us: \[ \int \frac{1}{x+4} e^x \, dx = \frac{e^x}{x+4} + \int \frac{e^x}{(x+4)^2} \, dx \] ### Step 4: Substitute Back Now we substitute this back into our expression: \[ \left( \frac{e^x}{x+4} + \int \frac{e^x}{(x+4)^2} \, dx \right) - \int \frac{1}{(x+4)^2} e^x \, dx \] Notice that the two integrals \( \int \frac{e^x}{(x+4)^2} \, dx \) cancel each other out: \[ \int \frac{x+3}{(x+4)^2} e^x \, dx = \frac{e^x}{x+4} + C \] ### Final Answer Thus, the integral \( \int \frac{x+3}{(x+4)^2} e^x \, dx \) is equal to: \[ \frac{e^x}{x+4} + C \]

To solve the integral \( \int \frac{x+3}{(x+4)^2} e^x \, dx \), we can follow these steps: ### Step 1: Rewrite the Numerator We can rewrite the numerator \( x + 3 \) as \( (x + 4) - 1 \). This allows us to separate the integral into two parts: \[ \int \frac{x+3}{(x+4)^2} e^x \, dx = \int \frac{(x+4) - 1}{(x+4)^2} e^x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx is equal to

int e^(x)dx is equal to

int((x+2)/(x+4))^(2)e^(x)dx is equal to

int (x+3)/(x+4)^2e^x dx is equal to

int(x-3)/((x-1)^(3)).e^(x)dx is equal to

int a^(x)e^(x)dx" is equal to "

int(x e^(x))/((1+x)^(2)) dx is equal to

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

int x^(3)e^(x^(2))dx is equal to