Home
Class 12
MATHS
If int(0)^(a) (1)/(1+4x^(2)) dx = pi/8, ...

If `int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8`, then `a= `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \frac{\pi}{8}, \] we will follow these steps: ### Step 1: Substitute Variables We will use the substitution \( t = 2x \). Then, the differential \( dx \) can be expressed in terms of \( dt \): \[ dx = \frac{dt}{2}. \] ### Step 2: Change the Limits of Integration Next, we need to change the limits of integration according to our substitution. When \( x = 0 \), \( t = 2 \cdot 0 = 0 \). When \( x = a \), \( t = 2a \). Thus, the new limits of integration will be from \( 0 \) to \( 2a \). ### Step 3: Rewrite the Integral Now we can rewrite the integral: \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \int_{0}^{2a} \frac{1}{1 + 4\left(\frac{t}{2}\right)^2} \cdot \frac{dt}{2} = \int_{0}^{2a} \frac{1}{1 + t^2} \cdot \frac{dt}{2}. \] ### Step 4: Simplify the Integral This simplifies to: \[ \frac{1}{2} \int_{0}^{2a} \frac{1}{1 + t^2} \, dt. \] ### Step 5: Evaluate the Integral The integral \( \int \frac{1}{1 + t^2} \, dt \) is known to be \( \tan^{-1}(t) \). Therefore, we have: \[ \frac{1}{2} \left[ \tan^{-1}(t) \right]_{0}^{2a} = \frac{1}{2} \left( \tan^{-1}(2a) - \tan^{-1}(0) \right) = \frac{1}{2} \tan^{-1}(2a). \] ### Step 6: Set Up the Equation We set this equal to \( \frac{\pi}{8} \): \[ \frac{1}{2} \tan^{-1}(2a) = \frac{\pi}{8}. \] ### Step 7: Solve for \( \tan^{-1}(2a) \) Multiplying both sides by 2 gives: \[ \tan^{-1}(2a) = \frac{\pi}{4}. \] ### Step 8: Find \( 2a \) Taking the tangent of both sides, we have: \[ 2a = \tan\left(\frac{\pi}{4}\right) = 1. \] ### Step 9: Solve for \( a \) Finally, solving for \( a \): \[ a = \frac{1}{2}. \] Thus, the required value of \( a \) is \[ \boxed{\frac{1}{2}}. \]

To solve the integral equation \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \frac{\pi}{8}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1)/(x^(2)+4x+5)dx =

If int_0^a (1)/(1+4x^(2))dx=(pi)/(8) , then 2a =

int_(0)^( pi/8)(1)/(1+4x^(2))dx=?

int_(0)^(pi//4) (dx)/(1+x^(2))

int_(0)^( pi/2)(x)/((1-x^(2)))dx

int_(0)^( pi/4)(1)/(cos^(2)x)dx

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

int_(0)^(pi//4) (1)/(1+cos 2x)dx

int_(0)^( pi/2)(1)/(1+cot^(2)x)dx=?