Home
Class 12
MATHS
int(sinx)/(3+4cos^(2)x)dx...

`int(sinx)/(3+4cos^(2)x)dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx \), we can use a substitution method. Here’s a step-by-step breakdown of the solution: ### Step 1: Substitution Let \( t = \cos x \). Then, the derivative \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx = \int \frac{-dt}{3 + 4t^2} \] ### Step 3: Factor Out Constants We can factor out the constant in the denominator: \[ = -\int \frac{dt}{4\left(\frac{3}{4} + t^2\right)} = -\frac{1}{4} \int \frac{dt}{\frac{3}{4} + t^2} \] ### Step 4: Recognize the Integral Form The integral \( \int \frac{dt}{a^2 + t^2} \) has the solution \( \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \). Here, \( a^2 = \frac{3}{4} \) implies \( a = \frac{\sqrt{3}}{2} \). ### Step 5: Solve the Integral Using the formula: \[ -\frac{1}{4} \int \frac{dt}{\frac{3}{4} + t^2} = -\frac{1}{4} \cdot \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1} \left( \frac{t}{\frac{\sqrt{3}}{2}} \right) + C \] This simplifies to: \[ = -\frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{2t}{\sqrt{3}} \right) + C \] ### Step 6: Substitute Back Now, substituting back \( t = \cos x \): \[ = -\frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{2\cos x}{\sqrt{3}} \right) + C \] ### Final Answer Thus, the integral \( \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx \) evaluates to: \[ -\frac{1}{2\sqrt{3}} \tan^{-1} \left( \frac{2\cos x}{\sqrt{3}} \right) + C \] ---

To solve the integral \( \int \frac{\sin x}{3 + 4 \cos^2 x} \, dx \), we can use a substitution method. Here’s a step-by-step breakdown of the solution: ### Step 1: Substitution Let \( t = \cos x \). Then, the derivative \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(cos^(2)x)dx=

Evaluate : (i) int(sinx)/((1-4cos^(2)x))dx (ii) int("cosec"^(2)x)/((1-cot^(2)x))dx

int(sinx)/((1+cos^(2)x))dx

Evaluate : (i) int cos^(3)xsinxdx (ii) int(sqrt(sinx))cosxdx (iii) int(cosec^(2)x)/((1+cotx))dx (iv) int(sinx)/((3+4cosx)^(2))dx

int(sinx)/sqrt(4-cos^(2)x)dx=

int(sinx)/(1+cos^2x)dx

" 1."int(sinx)/(cos^(7) x)dx

(i) int(sinx)/(cos^(5)x)dx

int(sinx)/((3+4cos x)^(3))dx

int(sinx)/((3+4cos x)^(3))dx