Home
Class 12
MATHS
If veca,vecbandvecc are three vectors su...

If `veca,vecbandvecc` are three vectors such that `veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5`, then the value of `veca.vecb+vecb.vecc+vecc.veca` is

A

0

B

1

C

`-19`

D

38

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given the conditions \( \vec{a} + \vec{b} + \vec{c} = 0 \) and the magnitudes \( |\vec{a}| = 2 \), \( |\vec{b}| = 3 \), and \( |\vec{c}| = 5 \). ### Step-by-Step Solution: 1. **Use the given magnitudes to find the squares:** \[ |\vec{a}|^2 = 2^2 = 4, \quad |\vec{b}|^2 = 3^2 = 9, \quad |\vec{c}|^2 = 5^2 = 25 \] 2. **Substitute into the equation:** We know that \( \vec{a} + \vec{b} + \vec{c} = 0 \). Taking the dot product of both sides with itself gives: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] 3. **Expand the dot product:** \[ \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 4. **Substitute the values:** \[ 4 + 9 + 25 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 5. **Combine the constants:** \[ 38 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 6. **Isolate the dot product term:** \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -38 \] 7. **Divide by 2:** \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -19 \] ### Final Answer: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -19 \]

To solve the problem, we need to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given the conditions \( \vec{a} + \vec{b} + \vec{c} = 0 \) and the magnitudes \( |\vec{a}| = 2 \), \( |\vec{b}| = 3 \), and \( |\vec{c}| = 5 \). ### Step-by-Step Solution: 1. **Use the given magnitudes to find the squares:** \[ |\vec{a}|^2 = 2^2 = 4, \quad |\vec{b}|^2 = 3^2 = 9, \quad |\vec{c}|^2 = 5^2 = 25 \] ...
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Three Dimensional Geometry|46 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three vectors such that 3veca+4vecb+6vecc=vec0, |veca|=3, |vecb|=3 and |vecc|=4 , then the value of -864((veca.vecb+vecb.vecc+vecc.veca)/(6)) is equal to

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb,vecc are three vectors such that |veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca , then find the value of |veca+veca-vecc|

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

If |veca| =5, |vecb| =4, |vecc| =3 and veca + vecb + vecc =0, then the vlaue of |veca, vecb + vecb.vecc+vecc,veca|, is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

NCERT EXEMPLAR-VECTOR ALGEBRA-Vector Algebra
  1. For any vector veca the value of |vecaxxhati|^2+|vecaxxhatj|^2+|vecaxx...

    Text Solution

    |

  2. If |veca|=10,|vecb|=2andveca.vecb=12, then the value of |vecaxxvecb| i...

    Text Solution

    |

  3. The vectors lamdahati+hatj+2hatk,hati+lamdahatj-hatkand2hati-hatj+lamd...

    Text Solution

    |

  4. If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0, then ...

    Text Solution

    |

  5. The projection vector of veca" on "vecb is

    Text Solution

    |

  6. If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|ve...

    Text Solution

    |

  7. If |veca|=4and-3lelamdale2, then the range of |lamdaveca| is

    Text Solution

    |

  8. The number of vectors of unit length perpendicular to the vectors veca...

    Text Solution

    |

  9. The vector veca+vecb bisects the angle between the non-collinear vecto...

    Text Solution

    |

  10. If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr...

    Text Solution

    |

  11. The vectors veca=3hati-2hatj+2hatkandvecb=-hati-2hatk are the adjacent...

    Text Solution

    |

  12. The values of k, for which |k" "veca|ltveca| andk" "veca+(1)/(2)veca i...

    Text Solution

    |

  13. The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

    Text Solution

    |

  14. If |vecaxxvecb|^(2)+(veca.vecb)^(2)=144and|veca|=4,"then "|vecb| is eq...

    Text Solution

    |

  15. If veca is any non-zero vector, then (veca.hati).hati+(veca.hatj).hatj...

    Text Solution

    |

  16. If |veca|=|vecb|, then necessarily it implies veca=+-vecb.

    Text Solution

    |

  17. Position vector of a point vecP is a vector whose initial point is ori...

    Text Solution

    |

  18. If |veca+vecb|=|veca-vecb|, then the vectors vecaandvecb are orthogona...

    Text Solution

    |

  19. The formula (veca+vecb)^(2)=vec(a^(2))+vec(b^(2))+2vecaxxvecb is valid...

    Text Solution

    |

  20. If vecaandvecb are adjacent sides of a rhombus, then veca.vecb=0.

    Text Solution

    |