Home
Class 11
MATHS
Evaluate: ("lim")(xvec0)(sinx)/x,w h e r...

Evaluate: `("lim")_(xvec0)(sinx)/x,w h e r e[dot]` represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate: [(lim)_(x rarr0)(tan^(-1)x)/(x)], where [ lrepresent the greatest integer function

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

The value of lim_(xrarr0)[(x)/(sinx)] , where [.] represents the greatest integer function,is

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Evaluate: int_(-100)^(100)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate :(lim)_(x rarr2^(+))([x-2])/(log(x-2)), where [.] represents the greatest integer function.