Home
Class 12
MATHS
f(x)={(sqrt(1+p x)-sqrt(1-p x))/x ,-1lt=...

`f(x)={(sqrt(1+p x)-sqrt(1-p x))/x ,-1lt=x<0(2x+1)/(x-2),0geqxgeq1` is continuous in the interval `[-1,1],` then `p` is equal to `-1` (b) `-1/2` (c) `1/2` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

If f(x) {: (=(sqrt(1+px) - sqrt(1- px))/x", if "-1/2 le x lt 0 ),(= 3x^(2) + 2x - 2 ", if " 0 le x lt 1 ):} is continuous on its domain , then : p =

If f(x)={{:(sqrt(1+kx)-sqrt(1-kx)," if ", -1le x lt 0),((2x+1)/(x-1), " if ", x le x le1):} is continuous at x = 0 , then the value the of k is

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .