Home
Class 11
MATHS
" (viii) "sin(A+B)*sin(A-B)=sin^(2)A-sin...

" (viii) "sin(A+B)*sin(A-B)=sin^(2)A-sin^(2)B

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

Prove that sin(A+B)sin(A-B)=sin^2A-sin^2B

Prove that sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B .

Prove that : sin (A + B) sin (A - B) = sin^2A- sin^2B .

sum(sin (A+B) sin (A-B))/(sin^(2)A sin^(2)B)=

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

Prove that sin^(2)(A+B)-sin^(2)(A-B)=sin2A*sin2B