Home
Class 11
MATHS
("lim")(xvec1)(n x^(n+1)-(n+1)x^n+1)/((e...

`("lim")_(xvec1)(n x^(n+1)-(n+1)x^n+1)/((e^x-e)sinpix),w h e r en=100 ,` is equal to : `(5050)/(pie)` (b) `(100)/(pie)` (c) `-(5050)/(pie)` (d) `-(4950)/(pie)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr1) (nx ^ (n + 1) -nx ^ (n) +1) / ((e ^ (x) -e ^ (2)) sin pi x)

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

lim_(x rarr oo)(1-x+x*e^((1)/(n)))^(n)

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

(lim)_(x->0)((1-t a n x)/(1+sin x))^(cos e c\ x)

("lim")_(xvec1)[cos e c(pix)/2]^(1/((1-x)))(w h e r e[dot]r e p r e s e n t st h e gif is e q u a l to (a) 0 (b) 1 (c) oo (d) does not exist

lim_(xto oo) (1)/(n) {1+e^(1//n)+e^(2//n)+e^(3//n)+.....+e^((n-1)/(n))} is equal to

If L=(lim)_(x->oo)(logx^n-[x])/([x]),\ w h e r e\ n in N ,\ t h e n-2L=

Evaluate: ("lim")_(xvec2a^+)((e^x I n(2^(x-1))-(2^x-1)^xsinx)/(e^(x I nx)))^(1/x)