Home
Class 11
MATHS
Let L=lim(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)...

Let `L=lim_(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0`. If `L` is finite , then (a)``a=2` (b) `a=1` (c)`L=1/(64)` (d) `L=1/(32)`

Text Solution

AI Generated Solution

To solve the limit \( L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4} \) where \( a > 0 \), we will follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit: \[ L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0. If L

Let L=lim_(xrarr0)(b-sqrt(b^(2)+x^(2))-(x^(2))/(4))/(x^(4)), b gt 0 . If L is finite, then

Let L=(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>=0 if L is finite then (1)/(8L)

Let L= lim_(x->0) (a-(a^3-x^3)^(1//3) - x^3/108)/(x^6); a>0 If L is finite, then L is

Let L= Lim_(x rarr-2)(3x^(2)+ax+a+1)/(x^(2)+x-2) .If L is finite,then a) L= 4/3 b) L=13 c) L=-2 d) L= -1/3

If L=lim_(x to oo) (x+1-sqrt(ax^(2)+x+3)) exists finitely then The value of L is

If l=lim_(x rarr0)(sqrt(3x^(2)+a^(2))-sqrt(x^(2)+3a^(2)))/(x-a) then