Home
Class 11
MATHS
If ("lim")(xvec0)(cos4x+acos2x+b)/(x^4) ...

If `("lim")_(xvec0)(cos4x+acos2x+b)/(x^4)` is finite, find `aa n db` using expansion formula.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(cos4x-4cos2x+3)/(x^(4))=

If lim_(x rarr0)(a cos x+bx sin x-5)/(x^(4)) is finite the a=

lim_(x-gt0)(cos2x-cos3x)/(cos4x-1)

If lim_(x rarr0)(cos4x+a cos2x+b)/(x^(4)) is finite then the value of a,b respectively

lim_(x->0)(1-cos x-cos2x+cos x*cos2x)/(x^(4))

lim_(x rarr0)x^(4)cos(2/x)

If lim_(x rarr0)((cos4x+a cos2x+b)/(x^(4))) is finite then the value of a,b respectively is finite

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

If (lim)_(x->0)(A cos x+B xsinx-5)/(x^4) exists & finite. Find A\ &\ B and also the unit.

The probability for which ("lim")_(xvec0)(ln((cosx)^a))/(x^b) exists finitely, where (a, b) is the possible outcome of throwing a pair of normal dice, is 1/6 (b) 1/3 (d) 2/3 (d) 3/4