Home
Class 11
MATHS
The value of lim(x->0)((sinx)^(1/x)+(1/x...

The value of `lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx))` , where `x >0,` is 0 (b) `-1` (c) 1 (d) 2

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

Find the value of lim_(xto0^(+)) (sinx)^((1)/(x)) .

The value of lim_(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

Evaluate : lim_( x -> 0 ) ( 1/sinx - 1/x )

lim_(x rarr0)(sinx/x)^(1/(1-cos x))

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).