Home
Class 11
MATHS
If L=lim(x->0)(sin2x+asinx)/(x^3) i...

If `L=lim_(x->0)(sin2x+asinx)/(x^3)` is finite, then find the value of `aa n dLdot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

if L=lim_(x rarr0)(sin2x+a sin x)/(x^(3)) is finite then find the value of a&L

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

if lim_(x rarr0)(sin2x+a sin x)/(x^(3)) be finite,then the value of a is

lim_(x->0)(a sin x-2sin2x)/(tan^(3)x) is finite,then a=

lim_(x rarr0)(2sin x-sin2x)/(x^(3))

If quad m,n in I_(0)and(lim)_(x rarr0)(tan2x-n sin x)/(x^(3))= some integer then find the value of n and also the value of limit.

If lim_(x rarr0)(a cos x+bx sin x-5)/(x^(4)) is finite the a=

If lim_(x rarr o)(sin2x+a sin x)/(x^(3)) be finite,then the value a and the limit are respectively given by

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to