Home
Class 11
MATHS
Evaluate: [("lim")(xrarr0)(tan^(-1)x)/x...

Evaluate: `[("lim")_(xrarr0)(tan^(-1)x)/x],` where [.]represent the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

Evaluate :(lim)_(x rarr2^(+))([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Evlute [limt_(x to 0)(tan^(-1)x)/(x)] , where [*] re[resemts the greatest integer function.

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Statement 1:lim_(x rarr0)[(tan^(-1))/(x)]=0, where [.] represents greatest integer function. Statement 2:(tan^(-1))/(x)<1 in the neighbourhood of x=0

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

The value of lim_(xrarr0)[(x)/(sinx)] , where [.] represents the greatest integer function,is

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.