Home
Class 11
MATHS
lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec...

`lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1)`is equal to (a)`2` (b)` 1` (c) `(log)_a2` (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

The lim_(x rarr oo)(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),a>0,a!=1 is equal to

lim_(x rarr oo)(cot^(-1)(sqrt(x+1)-sqrt(x)))/(sec^(-1){((2x+1)/(x-1))^(x))) is equal to

lim_(x rarr0)(cot)^((1)/(log x))

lim_(x->0)(e^log(2^x-1)^x-(2^x-1)^(x)*sinx))/(e^(xlogx)) is equal to

lim_(x rarr0)(cot x)^((1)/(log x))

lim_(x rarr1)(x^(3)-x^(2)log x+log x-1)/(x^(2)-1) =

(log x)^(log x),x gt1

lim_(x rarr oo)x(log(x+1)-log x)=

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to