Home
Class 11
MATHS
lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2)...

`lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=` (a)`-1` (b) 1 (c) 0 (d) 2

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(x rarr0)(log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr0)(log(1-x^(2)))/(log cos x)

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

lim_(x rarr0)[(log(1+7x)-log(1+3x))/(x)]

lim_(x rarr0)(e^(x)+log(1+x)-(1-x)^(-2))/(x^(2))

Evaluate: ("Lim")_(x->0)((log)_(secx/2)(cosx))/((log)_(secx)(cos(x//2))) 1 (b) 16 (c) 4 (d) 2

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(x rarr0)(ln(1+x)^(1+x))/(x^(2))-(1)/(x)