Home
Class 11
MATHS
Evaluate ("lim")(nvecoo){cos(x/2)cos(x/4...

Evaluate `("lim")_(nvecoo){cos(x/2)cos(x/4)cos(x/8) cos(x/(2^n))}`

Text Solution

AI Generated Solution

To evaluate the limit \[ \lim_{n \to \infty} \left( \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \cdots \cos\left(\frac{x}{2^n}\right) \right), \] we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

8.sin(x/8). cos (x/2).cos (x/4).cos (x/8) =

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

The value of lim_(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(n))) is equal to

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

Evaluate lim_(xto0)(1-cos2x)/(1-cos4x)

Evaluate: ("Lim")_(x->0)(1-cosx cos2x cos3x)/(x^2)