Home
Class 12
MATHS
The integral int0^pisqrt(1+4sin^2(x/2)-4...

The integral `int_0^pisqrt(1+4sin^2(x/2)-4sin(x/2)dx)` equal (1) `pi-4` (2) `(2pi)/3-4-4sqrt(3)` (3) `4""sqrt(3)-4` (4) `4""sqrt(3)-4-pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_0^pi sqrt(1 + 4 sin^2(x/2) - 4 sin (x/2)) dx equals :

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals

The integral int_(0)^(pi) sqrt(1 + 4 sin^2 x/2 - 4 sin x/2) dx equals :

The integral int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-4sin((x)/(2))dx) equal (1)pi-4(2)(2 pi)/(3)-4-4sqrt(3)(3)4sqrt(3)-4(4)4sqrt(3)-4-(pi)/(3)

The integral int_(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is equal to

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

The integral int_(pi)^(0)sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dx equals ,