Home
Class 12
MATHS
" If "e^(y)=y^(x)," then show that "(dy)...

" If "e^(y)=y^(x)," then show that "(dy)/(dx)=((log y)^(2))/(log y-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)