Home
Class 12
MATHS
If the circles x^2 + y^2 + 2ax + b = 0 a...

If the circles `x^2 + y^2 + 2ax + b = 0` and `x^2+ y^2+ 2cx + b = 0` touch each other `(a!=c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If two circles x^2 + y^2 + ax + by = 0 and x^2 + y^2 + kx + ly = 0 touch each other, then (A) al = bk (B) ak = bl (C) ab = kl (D) none of these

If two circles x^2 + y^2 + ax + by = 0 and x^2 + y^2 + kx + ly = 0 touch each other, then (A) al = bk (B) ak = bl (C) ab = kl (D) none of these

If the circles x ^2 + y ^2 + 2ax + c = 0 and x ^2 + y ^2 +2by + c = 0 touch each other, prove that 1/a ^2 + 1 b ^2 = 1/c

Show that the circles x^2 +y^2 + 2ax + c = 0 and x^2 + y^2 + 2by + c = 0 touch each other if 1//a^2 + 1//b^2 = 1//c.

If two circles x^(2) + y^(2) - 2ax + c = =0 and x^(2) + y^(2) - 2by + c = 0 touch each other , then c =

Show that the circles x^(2) +y^(2) + 2ax + c=0 and x ^(2) + y^(2) + 2by + c=0 to touch each other if (1)/(a^(2)) + (1)/( b^(2)) = (1)/( c )

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

If the circles x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other, prove that, (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .