Home
Class 11
MATHS
Let f(a)=g(a)=k and their n t h derivati...

Let `f(a)=g(a)=k` and their `n t h` derivatives exist and are not equal for some `ndot` If. `("lim")_(xveca)(f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(a)=g(a)=k and their n^th order derivatives f^n(a),g^n(a) exist and are not equal for some n in N . Further, if lim_(xrarra)(f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 , then the value of k, is

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

phi(x)=f(x)*g(x)" and f'(x)*g'(x)=k ,then (2k)/(f(x)*g(x))=

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

int{f(x)g'(x)-f'g(x)}dx equals

Let g(x)=x^(3)-4x+6. If f'(x)=g(x) and f(1)=2, then what is f(x) equal to?