Home
Class 12
MATHS
lim(x rarr0)(x)/(|x|+x^(2))=...

lim_(x rarr0)(x)/(|x|+x^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

lim_(x rarr0)(|x|)/(x)

Given lim_(x rarr0)(f(x))/(x^(2))=2, where [.] denotes the greatest integer function,then lim_(x rarr0)[f(x)]=0lim_(x rarr0)[f(x)]=1lim_(x rarr0)[(f(x))/(x)] does not exist lim _(x rarr0)[(f(x))/(x)] exists

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)(tan x-x)/(x^(2)tan x)

lim_(x rarr0)(sin x-x)/(x^(2)sin x)

lim_(x rarr0)(x^(2)-1)/(x^(2))

lim_(x rarr0)(1-cos x)/(x^(2))

lim_(x rarr0)(sec x-1)/(x^(2))

lim_(x rarr0)(x)/(sin2x)