Home
Class 11
MATHS
5*3^(2)+3^(2)+5^(2)+m^(4)+(2n-1)^(2)=(n(...

5*3^(2)+3^(2)+5^(2)+m^(4)+(2n-1)^(2)=(n(2n-1)(2n+1))/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : 1^(2)+3^(2)+5^(2)+...(2n-1)^(2)= (n(2n-1)(2n+1))/(3)

Prove the following by using the principle of mathematical induction for all n in N 1^2 +3 ^2 + 5^2 +………..+ (2n-1)^2 = (n(2n - 1)(2n+1))/(3)

(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^(2)+5((2n+1)/(2n-1))^(3)+

Prove the following by the method of induction for all n in N : 1^2 + 3^2 + 5^2 + ... + (2n - 1)^2 = n/3 (2n -1) (2n +1)

The sum of the series 1+4+3+6+5+8+ upto n term when n is an even number (n^(2)+n)/(4) 2.(n^(2)+3n)/(2) 3.(n^(2)+1)/(4) 4.(n(n-1))/(4)(n^(2)+3n)/(4)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)