Home
Class 12
MATHS
" If "x^(y)*y^(x)=1," prove that "(dy)/(...

" If "x^(y)*y^(x)=1," prove that "(dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x=e^((x)/(y)), prove that (dy)/(dx)=(x-y)/(x log x)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If x^y.y^x = 1 , then prove that : dy/dx = (-y (y+x logx))/(x(y log x + x))

Differentiate the following w.r.t.x. If x^y = y^x , prove that (dy)/(dx) = (y/x - "log y")/(x/y- "log x")

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)