Home
Class 11
MATHS
Evaluate: lim(x->0)x^m(logx)^n ,m , n i...

Evaluate: `lim_(x->0)x^m(logx)^n ,m , n in Ndot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0^(+))x^(m)(log x)^(n),m,n in N is

Evaluate: lim_(xtoe)(logx-1)/(x-e)

Evaluate: intdx/(x(logx)^m),xgt0

Evaluate : lim_( x -> 0 ) Sin^m ( x/2 ) / x^m

Evaluate : lim_( x ->1 )( ( x )^(1/n ) - 1 ) / ( ( x -1 )^(1/m) )

Evaluate : lim_( x -> 0 )( ( 1-x ) ^( 1/n ) -1) /x =

Evaluate lim_(xrarr0)((1+x)^(n)-1)/(x)

Evaluate lim_(xtoa) (logx-loga)/(x-a).

Evaluate lim_(x to 0) (1 - x^(n) - 1)/(x)

The value of lim_(xrarroo) (logx)/(x^n), n gt 0 , is