Home
Class 6
MATHS
Find the products, using distributive la...

Find the products, using distributive laws: (i) `740xx105`
(ii)`245xx1008`
(iii)`947xx96`
(iv)`996xx367`
(v) `472xx1097`
(vi) `580xx64`
(vii)`439xx997`
(viii) `1553xx198`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems using the distributive law, we will break down each multiplication into simpler parts. Let's go through each part step by step. ### (i) \(740 \times 105\) 1. **Break down 105**: \[ 740 \times 105 = 740 \times (100 + 5) \] 2. **Apply the distributive law**: \[ = 740 \times 100 + 740 \times 5 \] 3. **Calculate each part**: \[ 740 \times 100 = 74000 \] \[ 740 \times 5 = 3700 \] 4. **Add the results**: \[ 74000 + 3700 = 77700 \] **Final Answer**: \(740 \times 105 = 77700\) --- ### (ii) \(245 \times 1008\) 1. **Break down 1008**: \[ 245 \times 1008 = 245 \times (1000 + 8) \] 2. **Apply the distributive law**: \[ = 245 \times 1000 + 245 \times 8 \] 3. **Calculate each part**: \[ 245 \times 1000 = 245000 \] \[ 245 \times 8 = 1960 \] 4. **Add the results**: \[ 245000 + 1960 = 246960 \] **Final Answer**: \(245 \times 1008 = 246960\) --- ### (iii) \(947 \times 96\) 1. **Break down 96**: \[ 947 \times 96 = 947 \times (100 - 4) \] 2. **Apply the distributive law**: \[ = 947 \times 100 - 947 \times 4 \] 3. **Calculate each part**: \[ 947 \times 100 = 94700 \] \[ 947 \times 4 = 3788 \] 4. **Subtract the results**: \[ 94700 - 3788 = 90912 \] **Final Answer**: \(947 \times 96 = 90912\) --- ### (iv) \(996 \times 367\) 1. **Break down 367**: \[ 996 \times 367 = 996 \times (300 + 67) \] 2. **Apply the distributive law**: \[ = 996 \times 300 + 996 \times 67 \] 3. **Calculate each part**: \[ 996 \times 300 = 298800 \] \[ 996 \times 67 = 66732 \] 4. **Add the results**: \[ 298800 + 66732 = 365532 \] **Final Answer**: \(996 \times 367 = 365532\) --- ### (v) \(472 \times 1097\) 1. **Break down 1097**: \[ 472 \times 1097 = 472 \times (1000 + 97) \] 2. **Apply the distributive law**: \[ = 472 \times 1000 + 472 \times 97 \] 3. **Calculate each part**: \[ 472 \times 1000 = 472000 \] \[ 472 \times 97 = 45864 \] 4. **Add the results**: \[ 472000 + 45864 = 517864 \] **Final Answer**: \(472 \times 1097 = 517864\) --- ### (vi) \(580 \times 64\) 1. **Break down 64**: \[ 580 \times 64 = 580 \times (60 + 4) \] 2. **Apply the distributive law**: \[ = 580 \times 60 + 580 \times 4 \] 3. **Calculate each part**: \[ 580 \times 60 = 34800 \] \[ 580 \times 4 = 2320 \] 4. **Add the results**: \[ 34800 + 2320 = 37120 \] **Final Answer**: \(580 \times 64 = 37120\) --- ### (vii) \(439 \times 997\) 1. **Break down 997**: \[ 439 \times 997 = 439 \times (1000 - 3) \] 2. **Apply the distributive law**: \[ = 439 \times 1000 - 439 \times 3 \] 3. **Calculate each part**: \[ 439 \times 1000 = 439000 \] \[ 439 \times 3 = 1317 \] 4. **Subtract the results**: \[ 439000 - 1317 = 437683 \] **Final Answer**: \(439 \times 997 = 437683\) --- ### (viii) \(1553 \times 198\) 1. **Break down 198**: \[ 1553 \times 198 = 1553 \times (200 - 2) \] 2. **Apply the distributive law**: \[ = 1553 \times 200 - 1553 \times 2 \] 3. **Calculate each part**: \[ 1553 \times 200 = 310600 \] \[ 1553 \times 2 = 3106 \] 4. **Subtract the results**: \[ 310600 - 3106 = 307494 \] **Final Answer**: \(1553 \times 198 = 307494\) ---
Promotional Banner

Topper's Solved these Questions

  • WHOLE NUMBERS

    RS AGGARWAL|Exercise EXERCISE 3D (Fill in the blanks)|2 Videos
  • WHOLE NUMBERS

    RS AGGARWAL|Exercise EXERCISE 3E|16 Videos
  • WHOLE NUMBERS

    RS AGGARWAL|Exercise EXERCISE 3D (Fill in the blanks)|1 Videos
  • TWO-DIMENSIONAL REFLECTION SYMMETRY (LINEAR SYMMETRY)

    RS AGGARWAL|Exercise EXERCISE|10 Videos

Similar Questions

Explore conceptually related problems

Find the products, using distributive laws: (i) 3576 xx 9 (ii) 847xx99 (iii) 2437xx999

Using distributive law, find 937xx1007 .

Find the product 96xx104 .

Find the product using distributive property 149xx70+149xx20+149xx10 .

Using distributive property, 258xx1008 =

Find the product using suitable properties.(a) 738xx103(b)854xx102(c)258xx1008(d)1005xx108