Home
Class 6
MATHS
Find the sum 3(1)/(3) + 4 (1)/(4) + 6(...

Find the sum
`3(1)/(3) + 4 (1)/(4) + 6(1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the fractions \(3\left(\frac{1}{3}\right) + 4\left(\frac{1}{4}\right) + 6\left(\frac{1}{6}\right)\), we can follow these steps: ### Step 1: Simplify Each Term First, we simplify each term in the expression: - \(3\left(\frac{1}{3}\right) = \frac{3}{3} = 1\) - \(4\left(\frac{1}{4}\right) = \frac{4}{4} = 1\) - \(6\left(\frac{1}{6}\right) = \frac{6}{6} = 1\) ### Step 2: Add the Simplified Terms Now we add the simplified terms together: \[ 1 + 1 + 1 = 3 \] ### Final Answer Thus, the sum \(3\left(\frac{1}{3}\right) + 4\left(\frac{1}{4}\right) + 6\left(\frac{1}{6}\right) = 3\). ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    RS AGGARWAL|Exercise EXERCISE 5F|29 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise EXERCISE 5G|20 Videos
  • FRACTIONS

    RS AGGARWAL|Exercise EXERSICE 5D|30 Videos
  • FACTORS AND MULTIPLES

    RS AGGARWAL|Exercise Test paper - 2 (D.)|1 Videos
  • INTEGERS

    RS AGGARWAL|Exercise TEST PAPER - 4 (D)|1 Videos

Similar Questions

Explore conceptually related problems

Find the sum. 1/3+1/4

Find the sum 2(1)/(3)+1(1)/(4)+2(5)/(6)+3(7)/(12)

Find the sum: 1 1/6 + 3 1/6

The sum of the infinite series (1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3))) - ...is equal to

Find the sum (2)/(3)+3(1)/(6)+4(2)/(9)+2(5)/(18)

Find the sum : 1 1/8 - 2 3/4 + 6 2/3

5(1)/(6)-3(1)/(4)+3(1)/(3)+4

Find the sum of the series (1)/(3^(2)+1)+(1)/(4^(2)+2)+(1)/(5^(2)+3)+(1)/(6^(2)+4)+...oo