Simplify : `5(1)/(2)` of `((2)/(3)-(3)/(5))+(1)/(2)+(5)/(11)`
Text Solution
AI Generated Solution
The correct Answer is:
To simplify the expression \( 5 \left( \frac{1}{2} \right) \left( \left( \frac{2}{3} - \frac{3}{5} \right) + \frac{1}{2} + \frac{5}{11} \right) \), we will follow the order of operations (BODMAS/BIDMAS). Here’s the step-by-step solution:
### Step 1: Simplify the expression inside the parentheses
First, we need to simplify \( \left( \frac{2}{3} - \frac{3}{5} \right) \).
To subtract these fractions, we need a common denominator. The least common multiple (LCM) of 3 and 5 is 15.
\[
\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}
\]
\[
\frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \frac{9}{15}
\]
Now we can subtract:
\[
\frac{2}{3} - \frac{3}{5} = \frac{10}{15} - \frac{9}{15} = \frac{1}{15}
\]
### Step 2: Substitute back into the expression
Now substitute back into the original expression:
\[
5 \left( \frac{1}{2} \right) \left( \frac{1}{15} + \frac{1}{2} + \frac{5}{11} \right)
\]
### Step 3: Simplify the expression inside the parentheses
Next, we need to simplify \( \frac{1}{15} + \frac{1}{2} + \frac{5}{11} \).
To do this, we need a common denominator. The LCM of 15, 2, and 11 is 330.
Convert each fraction:
\[
\frac{1}{15} = \frac{1 \times 22}{15 \times 22} = \frac{22}{330}
\]
\[
\frac{1}{2} = \frac{1 \times 165}{2 \times 165} = \frac{165}{330}
\]
\[
\frac{5}{11} = \frac{5 \times 30}{11 \times 30} = \frac{150}{330}
\]
Now add them together:
\[
\frac{22}{330} + \frac{165}{330} + \frac{150}{330} = \frac{22 + 165 + 150}{330} = \frac{337}{330}
\]
### Step 4: Substitute back into the expression
Now substitute back into the expression:
\[
5 \left( \frac{1}{2} \right) \left( \frac{337}{330} \right)
\]
### Step 5: Multiply the fractions
Now we multiply:
\[
5 \times \frac{1}{2} \times \frac{337}{330} = \frac{5 \times 337}{2 \times 330} = \frac{1685}{660}
\]
### Step 6: Simplify the fraction
Now we simplify \( \frac{1685}{660} \). The greatest common divisor (GCD) of 1685 and 660 is 5.
Dividing both the numerator and the denominator by 5:
\[
\frac{1685 \div 5}{660 \div 5} = \frac{337}{132}
\]
### Final Answer
Thus, the simplified form of the expression is:
\[
\frac{337}{132}
\]
---