Home
Class 6
MATHS
Simplify : 5(1)/(2) of ((2)/(3)-(3)/(5))...

Simplify : `5(1)/(2)` of `((2)/(3)-(3)/(5))+(1)/(2)+(5)/(11)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 5 \left( \frac{1}{2} \right) \left( \left( \frac{2}{3} - \frac{3}{5} \right) + \frac{1}{2} + \frac{5}{11} \right) \), we will follow the order of operations (BODMAS/BIDMAS). Here’s the step-by-step solution: ### Step 1: Simplify the expression inside the parentheses First, we need to simplify \( \left( \frac{2}{3} - \frac{3}{5} \right) \). To subtract these fractions, we need a common denominator. The least common multiple (LCM) of 3 and 5 is 15. \[ \frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15} \] \[ \frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \frac{9}{15} \] Now we can subtract: \[ \frac{2}{3} - \frac{3}{5} = \frac{10}{15} - \frac{9}{15} = \frac{1}{15} \] ### Step 2: Substitute back into the expression Now substitute back into the original expression: \[ 5 \left( \frac{1}{2} \right) \left( \frac{1}{15} + \frac{1}{2} + \frac{5}{11} \right) \] ### Step 3: Simplify the expression inside the parentheses Next, we need to simplify \( \frac{1}{15} + \frac{1}{2} + \frac{5}{11} \). To do this, we need a common denominator. The LCM of 15, 2, and 11 is 330. Convert each fraction: \[ \frac{1}{15} = \frac{1 \times 22}{15 \times 22} = \frac{22}{330} \] \[ \frac{1}{2} = \frac{1 \times 165}{2 \times 165} = \frac{165}{330} \] \[ \frac{5}{11} = \frac{5 \times 30}{11 \times 30} = \frac{150}{330} \] Now add them together: \[ \frac{22}{330} + \frac{165}{330} + \frac{150}{330} = \frac{22 + 165 + 150}{330} = \frac{337}{330} \] ### Step 4: Substitute back into the expression Now substitute back into the expression: \[ 5 \left( \frac{1}{2} \right) \left( \frac{337}{330} \right) \] ### Step 5: Multiply the fractions Now we multiply: \[ 5 \times \frac{1}{2} \times \frac{337}{330} = \frac{5 \times 337}{2 \times 330} = \frac{1685}{660} \] ### Step 6: Simplify the fraction Now we simplify \( \frac{1685}{660} \). The greatest common divisor (GCD) of 1685 and 660 is 5. Dividing both the numerator and the denominator by 5: \[ \frac{1685 \div 5}{660 \div 5} = \frac{337}{132} \] ### Final Answer Thus, the simplified form of the expression is: \[ \frac{337}{132} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise 6A|15 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise 6B|10 Videos
  • RATIO, PROPORTION AND UNITARY METHOD

    RS AGGARWAL|Exercise TEST PAPER-10|19 Videos
  • THREE-DIMENSIONAL SHAPES

    RS AGGARWAL|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((13)/(5)x(8)/(3))-((-5)/(2)x(11)/(3))

Simplify: (4)/(3)+(3)/(5)+(-2)/(3)+(-11)/(5)

Simplify: ((13)/(9)x(-15)/(2))+((7)/(3)x(8)/(5))+((3)/(5)x(1)/(2))