Home
Class 6
MATHS
5(1)/(7)-{3(3)/(10)-:(2(4)/(5)-(7)/(10))...

`5(1)/(7)-{3(3)/(10)-:(2(4)/(5)-(7)/(10))}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 5\frac{1}{7} - \left\{ 3\frac{3}{10} \div \left( 2\frac{4}{5} - \frac{7}{10} \right) \right\} \), we will follow the order of operations (BODMAS/BIDMAS) which stands for Brackets, Orders (i.e., powers and square roots, etc.), Division and Multiplication (from left to right), Addition and Subtraction (from left to right). ### Step-by-Step Solution: 1. **Convert Mixed Numbers to Improper Fractions**: - Convert \( 5\frac{1}{7} \): \[ 5\frac{1}{7} = \frac{5 \times 7 + 1}{7} = \frac{35 + 1}{7} = \frac{36}{7} \] - Convert \( 3\frac{3}{10} \): \[ 3\frac{3}{10} = \frac{3 \times 10 + 3}{10} = \frac{30 + 3}{10} = \frac{33}{10} \] - Convert \( 2\frac{4}{5} \): \[ 2\frac{4}{5} = \frac{2 \times 5 + 4}{5} = \frac{10 + 4}{5} = \frac{14}{5} \] 2. **Substitute Back into the Expression**: The expression now looks like: \[ \frac{36}{7} - \left\{ \frac{33}{10} \div \left( \frac{14}{5} - \frac{7}{10} \right) \right\} \] 3. **Calculate the Expression Inside the Curly Bracket**: - First, solve \( \frac{14}{5} - \frac{7}{10} \): - Find a common denominator (which is 10): \[ \frac{14}{5} = \frac{14 \times 2}{5 \times 2} = \frac{28}{10} \] - Now subtract: \[ \frac{28}{10} - \frac{7}{10} = \frac{28 - 7}{10} = \frac{21}{10} \] 4. **Now Divide \( \frac{33}{10} \) by \( \frac{21}{10} \)**: - Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{33}{10} \div \frac{21}{10} = \frac{33}{10} \times \frac{10}{21} = \frac{33 \times 10}{10 \times 21} = \frac{33}{21} \] - Simplifying \( \frac{33}{21} \): \[ \frac{33 \div 3}{21 \div 3} = \frac{11}{7} \] 5. **Substitute Back into the Expression**: Now the expression is: \[ \frac{36}{7} - \frac{11}{7} \] 6. **Perform the Subtraction**: Since the denominators are the same: \[ \frac{36 - 11}{7} = \frac{25}{7} \] ### Final Answer: \[ \frac{25}{7} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise 6B|10 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Test paper -6|6 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise|2 Videos
  • RATIO, PROPORTION AND UNITARY METHOD

    RS AGGARWAL|Exercise TEST PAPER-10|19 Videos
  • THREE-DIMENSIONAL SHAPES

    RS AGGARWAL|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

(7)/(10)+(2)/(5)+(3)/(2)=

[[1,0,-13,4,50,-6,-7]]=[[(1)/(10),(3)/(10),(1)/(5)(21)/(20),-(7)/(20),-(2)/(5)-(9)/(10),(3)/(10),(1)/(5)]]

Solve (i) 2-(3)/(5)(ii)4+(7)/(8)(iii)(3)/(5)+(2)/(7)(iv)(9)/(11)-(4)/(5)(v)(7)/(10)+(2)/(5)+(3)/(2)(vi)(2)(2)/(3)+(3)(1)/(2) (vii) (8)(1)/(2)-(3)(5)/(8)

Verify the following: (i) ((3)/(4)+(-2)/(5))+(-7)/(10)=(3)/(4)+((-2)/(5)+(-7)/(10)) (ii) ((-7)/(11)+(2)/(-5))+(-13)/(22)=(-7)/(11)+((2)/(-5)+(-13)/(22)) (iii) -1+((-2)/(3)+(-3)/(4))=(-1+(-2)/(3))+(-3)/(4)

(7)/(x)+(3)/(5)=(-1)/(10)

(4y+1)/(3)+(2y-1)/(2)-(3y-7)/(5)=(47)/(10)

The arrangement of rational numbers (-7)/(10),(5)/(-8),(2)/(-3) in ascending order is (2)/(-3),(5)/(-8),(-7)/(10) (b) (5)/(-8),(-7)/(10),(2)/(-3) (c) (-7)/(10),(5)/(-8),(2)/(-3)(d)(-7)/(10),(2)/(-3),(5)/(-8)

(3)/(10)+(7)/(10^(2))+(3)/(10^(3))+(7)/(10^(4))+(3)/(10^(5))+(7)/(10^(6))+

Simplify : ((1)/(12) + ((-3)/( 4)) + (7)/(8)) xx (3 (2)/(5) - (7)/(10) + ((-2)/( 15)) - 10 (1)/(30))

(2^((1)/(2))xx3^((1)/(3))xx4^((1)/(4)))/(10^(-(1)/(5))xx5^((3)/(5)))-:(3^((4)/(3))xx5^(-(7)/(5)))/(4^(-(3)/(5))xx6)=10