Home
Class 6
MATHS
9(3)/(4)-:[2(1)/(6)+{4(1)/(3)-(1(1)/(2)+...

`9(3)/(4)-:[2(1)/(6)+{4(1)/(3)-(1(1)/(2)+1(3)/(4))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(9 \frac{3}{4} \div \left[ 2 \frac{1}{6} + \left\{ 4 \frac{1}{3} - \left( 1 \frac{1}{2} + 1 \frac{3}{4} \right) \right\} \right]\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert all mixed numbers to improper fractions. 1. \(9 \frac{3}{4} = \frac{9 \times 4 + 3}{4} = \frac{36 + 3}{4} = \frac{39}{4}\) 2. \(2 \frac{1}{6} = \frac{2 \times 6 + 1}{6} = \frac{12 + 1}{6} = \frac{13}{6}\) 3. \(4 \frac{1}{3} = \frac{4 \times 3 + 1}{3} = \frac{12 + 1}{3} = \frac{13}{3}\) 4. \(1 \frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2}\) 5. \(1 \frac{3}{4} = \frac{1 \times 4 + 3}{4} = \frac{4 + 3}{4} = \frac{7}{4}\) ### Step 2: Substitute Back into the Expression Now substitute these improper fractions back into the expression: \[ \frac{39}{4} \div \left[ \frac{13}{6} + \left\{ \frac{13}{3} - \left( \frac{3}{2} + \frac{7}{4} \right) \right\} \right] \] ### Step 3: Solve the Innermost Bracket Calculate \( \frac{3}{2} + \frac{7}{4} \): - Find a common denominator (which is 4): \[ \frac{3}{2} = \frac{6}{4} \quad \text{(multiply numerator and denominator by 2)} \] Now add: \[ \frac{6}{4} + \frac{7}{4} = \frac{13}{4} \] ### Step 4: Substitute and Simplify the Curly Bracket Now substitute back: \[ \frac{39}{4} \div \left[ \frac{13}{6} + \left\{ \frac{13}{3} - \frac{13}{4} \right\} \right] \] Next, calculate \( \frac{13}{3} - \frac{13}{4} \): - Find a common denominator (which is 12): \[ \frac{13}{3} = \frac{52}{12}, \quad \frac{13}{4} = \frac{39}{12} \] Now subtract: \[ \frac{52}{12} - \frac{39}{12} = \frac{13}{12} \] ### Step 5: Substitute Back into the Expression Now substitute back: \[ \frac{39}{4} \div \left[ \frac{13}{6} + \frac{13}{12} \right] \] ### Step 6: Solve the Square Bracket Now calculate \( \frac{13}{6} + \frac{13}{12} \): - Find a common denominator (which is 12): \[ \frac{13}{6} = \frac{26}{12} \] Now add: \[ \frac{26}{12} + \frac{13}{12} = \frac{39}{12} \] ### Step 7: Substitute and Simplify Now substitute back: \[ \frac{39}{4} \div \frac{39}{12} \] ### Step 8: Change Division to Multiplication Change the division to multiplication by taking the reciprocal: \[ \frac{39}{4} \times \frac{12}{39} \] ### Step 9: Cancel Out Common Factors The \(39\) in the numerator and denominator cancels out: \[ = \frac{12}{4} = 3 \] ### Final Answer The final answer is \(3\). ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise 6B|10 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Test paper -6|6 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise|2 Videos
  • RATIO, PROPORTION AND UNITARY METHOD

    RS AGGARWAL|Exercise TEST PAPER-10|19 Videos
  • THREE-DIMENSIONAL SHAPES

    RS AGGARWAL|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

[[ Simplify: [3(1)/(4)-:{1(1)/(4)-(1)/(2)(2(1)/(2)-(1)/(4)-(1)/(6))}]

Simplify : 8 (1)/(2)-[3 (1)/(4)-:{1(1)/(4) - (1)/(2) ( 1 (1)/(2)-(1)/(3)-(1)/(6))}]

[4(1)/(5)-:{1(3)/(4)-(1)/(2)(3(1)/(2)-(1)/(4)-(1)/(6))}]

2(4)/(9)+3(1)/(6)

1(5)/(6)+[2(2)/(3)-{3(3)/(4)(3(4)/(5)-:9(1)/(2))}]

(7(1)/(2)-5(3)/(4))/(3(1)/(2)+?)-:((1)/(2)+1(1)/(4))/(1(1)/(5)+3(1)/(2))=0.6 a) 4(1)/(3)(b)4(1)/(2) (c) 4(2)/(3) (d) None of these