Home
Class 6
MATHS
4(1)/(10)-[2(1)/(2)-{(5)/(6)-((2)/(5)+(3...

`4(1)/(10)-[2(1)/(2)-{(5)/(6)-((2)/(5)+(3)/(10)-(4)/(15))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4\left(\frac{1}{10}\right) - \left[2\left(\frac{1}{2}\right) - \left\{\frac{5}{6} - \left(\frac{2}{5} + \frac{3}{10} - \frac{4}{15}\right)\right\}\right] \), we will follow the order of operations, which is to solve the innermost brackets first and work our way outwards. ### Step-by-Step Solution: 1. **Solve the innermost bracket**: \[ \frac{2}{5} + \frac{3}{10} - \frac{4}{15} \] To add these fractions, we need a common denominator. The least common multiple (LCM) of 5, 10, and 15 is 30. - Convert each fraction: \[ \frac{2}{5} = \frac{12}{30}, \quad \frac{3}{10} = \frac{9}{30}, \quad \frac{4}{15} = \frac{8}{30} \] - Now substitute back into the expression: \[ \frac{12}{30} + \frac{9}{30} - \frac{8}{30} = \frac{12 + 9 - 8}{30} = \frac{13}{30} \] 2. **Substitute back into the curly bracket**: \[ \frac{5}{6} - \frac{13}{30} \] Again, we need a common denominator. The LCM of 6 and 30 is 30. - Convert \(\frac{5}{6}\): \[ \frac{5}{6} = \frac{25}{30} \] - Now substitute back: \[ \frac{25}{30} - \frac{13}{30} = \frac{25 - 13}{30} = \frac{12}{30} = \frac{2}{5} \] 3. **Substitute back into the square bracket**: \[ 2\left(\frac{1}{2}\right) - \frac{2}{5} \] Calculate \(2\left(\frac{1}{2}\right) = 1\). - Now substitute: \[ 1 - \frac{2}{5} \] Convert \(1\) to a fraction with a denominator of 5: \[ 1 = \frac{5}{5} \] Now perform the subtraction: \[ \frac{5}{5} - \frac{2}{5} = \frac{3}{5} \] 4. **Substitute back into the main expression**: \[ 4\left(\frac{1}{10}\right) - \frac{3}{5} \] Calculate \(4\left(\frac{1}{10}\right) = \frac{4}{10} = \frac{2}{5}\). - Now substitute: \[ \frac{2}{5} - \frac{3}{5} = \frac{2 - 3}{5} = \frac{-1}{5} \] ### Final Answer: \[ \frac{-1}{5} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise 6B|10 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Test paper -6|6 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise|2 Videos
  • RATIO, PROPORTION AND UNITARY METHOD

    RS AGGARWAL|Exercise TEST PAPER-10|19 Videos
  • THREE-DIMENSIONAL SHAPES

    RS AGGARWAL|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

The value of 3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))] is :

8(3)/(5)+1(2)/(5)-4(3)/(10)

2(1)/(4)+3(3)/(5)=? -4(3)/(10)

[[1,0,-13,4,50,-6,-7]]=[[(1)/(10),(3)/(10),(1)/(5)(21)/(20),-(7)/(20),-(2)/(5)-(9)/(10),(3)/(10),(1)/(5)]]

The value of 6((1)/(5)) - [4((1)/(2)) - {""((1)/(6)) - (""((3)/(5)) + ""((3)/(10)) - ""((7)/(15)))}] is

If A=[{:(2,3,10),(4,-6,5),(6,9,-20):}] , find A^(-1) . Using A^(-1) , solve the system of equations : {:((2)/(x)+(3)/(y)+(10)/(z)=2),((4)/(x)-(6)/(y)+(5)/(z)=5),((6)/(x)+(9)/(y)-(20)/(z)=-4):}