Home
Class 6
MATHS
1(5)/(6)+[2(2)/(3)-{3(3)/(4)(3(4)/(5)-:9...

`1(5)/(6)+[2(2)/(3)-{3(3)/(4)(3(4)/(5)-:9(1)/(2))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1\frac{5}{6} + \left[2\frac{2}{3} - \left\{3\frac{3}{4} \left(3\frac{4}{5} - :9\frac{1}{2}\right)\right\}\right]\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert all mixed numbers into improper fractions for easier calculations. - \(1\frac{5}{6} = \frac{6 \times 1 + 5}{6} = \frac{11}{6}\) - \(2\frac{2}{3} = \frac{3 \times 2 + 2}{3} = \frac{8}{3}\) - \(3\frac{3}{4} = \frac{4 \times 3 + 3}{4} = \frac{15}{4}\) - \(3\frac{4}{5} = \frac{5 \times 3 + 4}{5} = \frac{19}{5}\) - \(9\frac{1}{2} = \frac{2 \times 9 + 1}{2} = \frac{19}{2}\) Now, the expression becomes: \[ \frac{11}{6} + \left[\frac{8}{3} - \left\{\frac{15}{4} \left(\frac{19}{5} - :\frac{19}{2}\right)\right\}\right] \] ### Step 2: Simplify the Division Next, we simplify the division inside the curly braces: \[ \frac{19}{5} - :\frac{19}{2} = \frac{19}{5} \div \frac{19}{2} = \frac{19}{5} \times \frac{2}{19} = \frac{2}{5} \] Now, substitute this back into the expression: \[ \frac{11}{6} + \left[\frac{8}{3} - \left\{\frac{15}{4} \times \frac{2}{5}\right\}\right] \] ### Step 3: Multiply the Fractions Now, we calculate \(\frac{15}{4} \times \frac{2}{5}\): \[ \frac{15 \times 2}{4 \times 5} = \frac{30}{20} = \frac{3}{2} \] Now, substitute this back into the expression: \[ \frac{11}{6} + \left[\frac{8}{3} - \frac{3}{2}\right] \] ### Step 4: Simplify Inside the Brackets Now we need to simplify \(\frac{8}{3} - \frac{3}{2}\). To do this, we need a common denominator, which is 6: \[ \frac{8}{3} = \frac{16}{6}, \quad \frac{3}{2} = \frac{9}{6} \] So, \[ \frac{8}{3} - \frac{3}{2} = \frac{16}{6} - \frac{9}{6} = \frac{7}{6} \] ### Step 5: Add the Results Now we add \(\frac{11}{6}\) and \(\frac{7}{6}\): \[ \frac{11}{6} + \frac{7}{6} = \frac{18}{6} = 3 \] ### Final Answer Thus, the value of the expression is \(3\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise 6B|10 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Test paper -6|6 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise|2 Videos
  • RATIO, PROPORTION AND UNITARY METHOD

    RS AGGARWAL|Exercise TEST PAPER-10|19 Videos
  • THREE-DIMENSIONAL SHAPES

    RS AGGARWAL|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

3(2)/(5)+1(2)/(9)=4(4)/(5)-?

Simplify: (a) 108-:36 of (1)/(4)+(2)/(5)xx3(1)/(4) (b) (2)/(3)xx(5)/(6)+(4)/(9)-(3)/(4)+(2)/(9)xx(5)/(9)-:(2)/(9)

Knowledge Check

  • 5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]

    A
    7
    B
    `22/3`
    C
    `(44)/(7)`
    D
    `(43)/(6)`
  • A student was asked to simplify the following : (7)/(5-2(2)/(3))+(3-(2)/(3-1(1)/(2)))/(4-1(1)/(2))-(5)/(7)xx [(7)/(10)+1(1)/(5)xx(3(1)/(3)-2(1)/(2))/(2(5)/(21)-2)] +((3)/(1.6)+(5)/(3.2))/((5)/(4.8)+(1)/(9.6)) His answer was 3(1)/(5) . His answer was 3(1)/(5) . Find the per cent error.

    A
    `10%`
    B
    `20%`
    C
    `25%`
    D
    `50%`
  • A student was asked to simplify the following : (7)/(5-2(2)/(3))+(3-(2)/(3-1(1)/(2)))/(4-1(1)/(2))-(5)/(7)xx [(7)/(10)+1(1)/(5)xx(3(1)/(3)-2(1)/(2))/(2(5)/(21)-2)] +((3)/(1.6)+(5)/(3.2))/((5)/(4.8)+(1)/(9.6)) His answer was 3(1)/(5) . Find the per cent error in the answer

    A
    `10%`
    B
    `20%`
    C
    `20/3%`
    D
    `30%`
  • Similar Questions

    Explore conceptually related problems

    [(5(1)/(3)+3(2)/(3))*(6(2)/(3)*4(3)/(4))-:(3)/(2)]2/6

    If A=[(2)/(3)1(5)/(3)(1)/(3)(2)/(3)(4)/(3)(7)/(3)2(2)/(3)] and B=[(2)/(3)(2)/(5)1(1)/(5)(2)/(5)(4)/(5)(4)/(5)(7)/(3)(6)/(5)(2)/(5)], then compute 3A_(-)=5B

    (-(1)/(2)-(2)/(3)+(4)/(5)-(1)/(3)+(1)/(5)+(3)/(4))/((1)/(2)+(2)/(3)-(4)/(3)+(1)/(3)-(1)/(5)-(4)/(5)) is simplified to

    A=[[(2)/(3),1,(5)/(3)(1)/(3),(2)/(3),(4)/(3)(7)/(3),2,(2)/(3)]] and B=[[(2)/(5),(3)/(5),1(1)/(5),(2)/(5),(4)/(5)(7)/(5),(6)/(5),(2)/(5)]]

    1+((1)/(2)+(1)/(3))/((1)/(3)-(1)/(6))/2-((4)/(5)of(5)/(6))/((2)/(3))