Home
Class 6
MATHS
7(1)/(2)-[2(1)/(4)-:{1(1)/(4)-(1)/(2)((3...

`7(1)/(2)-[2(1)/(4)-:{1(1)/(4)-(1)/(2)((3)/(2)-bar((1)/(3)-(1)/(6)))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 7\frac{1}{2} - \left[ 2\frac{1}{4} \div \left\{ 1\frac{1}{4} - \frac{1}{2} \left( \frac{3}{2} - \left( \frac{1}{3} - \frac{1}{6} \right) \right) \right\} \right] \), we will follow the order of operations, which is to simplify the innermost brackets first and work our way outwards. ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \( 7\frac{1}{2} \) to an improper fraction: \[ 7\frac{1}{2} = \frac{7 \times 2 + 1}{2} = \frac{15}{2} \] 2. Convert \( 2\frac{1}{4} \) to an improper fraction: \[ 2\frac{1}{4} = \frac{2 \times 4 + 1}{4} = \frac{9}{4} \] 3. Convert \( 1\frac{1}{4} \) to an improper fraction: \[ 1\frac{1}{4} = \frac{1 \times 4 + 1}{4} = \frac{5}{4} \] ### Step 2: Simplify the Innermost Bracket Now, we simplify the innermost expression \( \frac{1}{3} - \frac{1}{6} \): \[ \text{LCM of } 3 \text{ and } 6 = 6 \] \[ \frac{1}{3} = \frac{2}{6}, \quad \frac{1}{6} = \frac{1}{6} \] \[ \frac{1}{3} - \frac{1}{6} = \frac{2}{6} - \frac{1}{6} = \frac{1}{6} \] ### Step 3: Substitute Back into the Expression Now substitute back into the expression: \[ \frac{3}{2} - \left( \frac{1}{6} \right) \] \[ \text{LCM of } 2 \text{ and } 6 = 6 \] \[ \frac{3}{2} = \frac{9}{6} \] \[ \frac{9}{6} - \frac{1}{6} = \frac{8}{6} = \frac{4}{3} \] ### Step 4: Substitute into the Larger Expression Now substitute back into the larger expression: \[ 1\frac{1}{4} - \frac{1}{2} \left( \frac{4}{3} \right) \] Convert \( \frac{1}{2} \) to a fraction: \[ \frac{1}{2} = \frac{3}{6} \] \[ \frac{1}{2} \left( \frac{4}{3} \right) = \frac{4}{6} = \frac{2}{3} \] Now substitute: \[ \frac{5}{4} - \frac{2}{3} \] \[ \text{LCM of } 4 \text{ and } 3 = 12 \] \[ \frac{5}{4} = \frac{15}{12}, \quad \frac{2}{3} = \frac{8}{12} \] \[ \frac{15}{12} - \frac{8}{12} = \frac{7}{12} \] ### Step 5: Final Division Now we substitute this back into the expression: \[ \frac{9}{4} \div \frac{7}{12} \] To divide by a fraction, multiply by its reciprocal: \[ \frac{9}{4} \times \frac{12}{7} = \frac{9 \times 12}{4 \times 7} = \frac{108}{28} = \frac{27}{7} \] ### Step 6: Final Calculation Now we have: \[ \frac{15}{2} - \frac{27}{7} \] \[ \text{LCM of } 2 \text{ and } 7 = 14 \] \[ \frac{15}{2} = \frac{105}{14}, \quad \frac{27}{7} = \frac{54}{14} \] \[ \frac{105}{14} - \frac{54}{14} = \frac{51}{14} \] ### Final Answer The final answer is: \[ \frac{51}{14} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise 6B|10 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Test paper -6|6 Videos
  • SIMPLIFICATION

    RS AGGARWAL|Exercise Exercise|2 Videos
  • RATIO, PROPORTION AND UNITARY METHOD

    RS AGGARWAL|Exercise TEST PAPER-10|19 Videos
  • THREE-DIMENSIONAL SHAPES

    RS AGGARWAL|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

7(1)/(2)-[2(1)/(4)-:{1(1)/(4)-(1)/(2)((3)/(2)-(1)/(3)-(1)/(6))}]

Simplify : 8 (1)/(2)-[3 (1)/(4)-:{1(1)/(4) - (1)/(2) ( 1 (1)/(2)-(1)/(3)-(1)/(6))}]

[4(1)/(5)-:{1(3)/(4)-(1)/(2)(3(1)/(2)-(1)/(4)-(1)/(6))}]

[[ Simplify: [3(1)/(4)-:{1(1)/(4)-(1)/(2)(2(1)/(2)-(1)/(4)-(1)/(6))}]

(5-[(3)/(4)+{2(1)/(2)-((1)/(2)+bar((1)/(6)-(1)/(7)))}])/(2)=?

(7)/(11)-"[1 (1)/(2)-[(1)/(2)+(1(3)/(4)-(1)/(2)+(1)/(3))]]