Home
Class 6
MATHS
Simplify: 2a - [3b - {a - (2c - 3b) + 4...

Simplify: `2a - [3b - {a - (2c - 3b) + 4c - 3 (a - b - 2c)}]`

A

`3b + 8c `

B

`2b + 8c `

C

`3b + 15c `

D

`3b + 7c `

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2a - [3b - \{a - (2c - 3b) + 4c - 3(a - b - 2c)\}] \), we will follow these steps: ### Step 1: Start with the original expression We have: \[ 2a - [3b - \{a - (2c - 3b) + 4c - 3(a - b - 2c)\}] \] ### Step 2: Simplify the innermost brackets First, we simplify \( a - (2c - 3b) \): \[ a - (2c - 3b) = a - 2c + 3b \] Now, substitute this back into the expression: \[ 2a - [3b - \{(a - 2c + 3b) + 4c - 3(a - b - 2c)\}] \] ### Step 3: Expand the expression inside the outer brackets Next, we simplify \( 3(a - b - 2c) \): \[ 3(a - b - 2c) = 3a - 3b - 6c \] Now substitute this back into the expression: \[ 2a - [3b - \{(a - 2c + 3b) + 4c - (3a - 3b - 6c)\}] \] ### Step 4: Combine the terms inside the brackets Now we simplify: \[ (a - 2c + 3b) + 4c - (3a - 3b - 6c) = a - 2c + 3b + 4c - 3a + 3b + 6c \] Combine like terms: \[ = (a - 3a) + (3b + 3b) + (-2c + 4c + 6c) = -2a + 6b + 8c \] Now substitute this back into the expression: \[ 2a - [3b - (-2a + 6b + 8c)] \] ### Step 5: Distribute the negative sign Distributing the negative sign gives: \[ 2a - [3b + 2a - 6b - 8c] \] This simplifies to: \[ 2a - 3b - 2a + 6b + 8c \] ### Step 6: Combine like terms Now combine the terms: \[ (2a - 2a) + (-3b + 6b) + 8c = 0 + 3b + 8c \] Thus, we have: \[ 3b + 8c \] ### Final Answer The simplified expression is: \[ \boxed{3b + 8c} \]

To simplify the expression \( 2a - [3b - \{a - (2c - 3b) + 4c - 3(a - b - 2c)\}] \), we will follow these steps: ### Step 1: Start with the original expression We have: \[ 2a - [3b - \{a - (2c - 3b) + 4c - 3(a - b - 2c)\}] \] ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise Exercise 8A|4 Videos
  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise Exercise 8B|9 Videos
  • ANGLES AND THEIR MEASUREMENT

    RS AGGARWAL|Exercise EXERCISE D|13 Videos

Similar Questions

Explore conceptually related problems

Simplify 2a(3b+5c+12a)

Add: 3a - 4b + 4c, 2a + 3b - 8c, a - 6b + c

Add: 6a + 8b - 5c, 2b + c - 4a and a - 3b - 2c.

Simplify (a+b)(2a-3b+c)-(2a-3b)c

2a-3b-[4a-3b-{a-2c-(a-2b-c)}]

If a, b, c are real and x^3-3b^2x+2c^3 is divisible by x -a and x - b, then (a) a =-b=-c (c) a = b = c or a =-2b-_ 2c (b) a = 2b = 2c (d) none of these

If 2a + 3b + 4c = 35 and 3a + 5b + 7c = 30 , then a + b + c = _____