Home
Class 6
MATHS
solve: (a^(2) + b^(2) + 2ab) - (a^(2) + ...

solve: `(a^(2) + b^(2) + 2ab) - (a^(2) + b^(2) - 2ab)`

A

6ab

B

5ab

C

4ab

D

3ab

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a^{2} + b^{2} + 2ab) - (a^{2} + b^{2} - 2ab)\), we will follow these steps: ### Step 1: Write the expression clearly We start with the expression: \[ (a^{2} + b^{2} + 2ab) - (a^{2} + b^{2} - 2ab) \] ### Step 2: Distribute the negative sign Next, we distribute the negative sign across the second set of parentheses: \[ = a^{2} + b^{2} + 2ab - a^{2} - b^{2} + 2ab \] ### Step 3: Combine like terms Now, we will combine the like terms: - The \(a^{2}\) terms: \(a^{2} - a^{2} = 0\) - The \(b^{2}\) terms: \(b^{2} - b^{2} = 0\) - The \(2ab\) terms: \(2ab + 2ab = 4ab\) Putting it all together, we have: \[ 0 + 0 + 4ab = 4ab \] ### Final Answer Thus, the simplified form of the expression is: \[ \boxed{4ab} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise Exercise 8C|17 Videos
  • ANGLES AND THEIR MEASUREMENT

    RS AGGARWAL|Exercise EXERCISE D|13 Videos

Similar Questions

Explore conceptually related problems

Simplify (a - b) (a ^(2) + b ^(2) + ab) - (a +b) (a ^(2) +b ^(2) - ab)

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to 1) (2ab)/(a^(2)-b^(2)) 2) (-2ab)/(a^(2)-b^(2)) 3) (2ab)/(a^(2)+b^(2)) 4) (-2ab)/(a^(2)+b^(2))

(a + b) ^ (2) - (ab) ^ (2)

Subtract: 5a^(2) - 7ab + 5b^(2) "from" 3ab - 2a^(2) - 2b^(2)

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(2) + 2 ab xy + b ^(2) y ^(2)

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to