Home
Class 6
MATHS
-3 (a + b) + 4 (2a - 3b) - (2a - b)...

-3 (a + b) + 4 (2a - 3b) - (2a - b)

A

3a - 15 b

B

3a -14b

C

4a - 12 b

D

5b - 6 a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(-3 (a + b) + 4 (2a - 3b) - (2a - b)\), we will follow these steps: ### Step 1: Distribute the terms inside the brackets We will start by distributing the coefficients outside the brackets to the terms inside: 1. For \(-3(a + b)\): \[ -3 \cdot a - 3 \cdot b = -3a - 3b \] 2. For \(4(2a - 3b)\): \[ 4 \cdot 2a + 4 \cdot (-3b) = 8a - 12b \] 3. For \(-(2a - b)\): \[ -1 \cdot 2a + 1 \cdot b = -2a + b \] Now, we can rewrite the expression by substituting these results back in: \[ -3a - 3b + 8a - 12b - 2a + b \] ### Step 2: Combine like terms Now we will combine the like terms (the terms with \(a\) and the terms with \(b\)): 1. Combine the \(a\) terms: \[ -3a + 8a - 2a = (8 - 3 - 2)a = 3a \] 2. Combine the \(b\) terms: \[ -3b - 12b + b = (-3 - 12 + 1)b = -14b \] ### Step 3: Write the final expression Putting it all together, we have: \[ 3a - 14b \] Thus, the final simplified expression is: \[ \boxed{3a - 14b} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSION

    RS AGGARWAL|Exercise Exercise 8C|17 Videos
  • ANGLES AND THEIR MEASUREMENT

    RS AGGARWAL|Exercise EXERCISE D|13 Videos

Similar Questions

Explore conceptually related problems

Simplify: 2a - [3b - {a - (2c - 3b) + 4c - 3 (a - b - 2c)}]

Add: 3a - 4b + 4c, 2a + 3b - 8c, a - 6b + c

If a : b = 4 : 5, then (2a + 3b) : (3a + 2b) is equal to : यदि a : b = 4 : 5 है, तो (2a + 3b) : (3a + 2b) का मान क्या होगा ?

4(2a-3b)^(2)+8(2a-3b)

If (5a - 3b) : (4a - 2b) = 2:3, then a:b is equal to: यदि (5a - 3b) : (4a - 2b) = 2:3 है, तो a : b का मान क्या होगा ?

Subtract (2a - 3b + 4c) from the sum of (a + 3b - 4c), (4a - b +9c) and (-2b + 3c -a )

If x = (sqrt(2a + 3b)+sqrt(2a - 3b))/(sqrt(2a + 3b) - sqrt(2a - 3b)) , show that 3bx^(2) - 4ax + 3b = 0 .

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). 3a ^(2) b ^(3) - 27 a ^(4) b