Home
Class 6
MATHS
(b^(2)-a^(2))-(a^(2)-b^(2))- ..............

`(b^(2)-a^(2))-(a^(2)-b^(2))-` ........... .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((b^2 - a^2) - (a^2 - b^2)\), we can follow these steps: ### Step-by-Step Solution: 1. **Write down the expression**: \[ (b^2 - a^2) - (a^2 - b^2) \] 2. **Apply the difference of squares formula**: The difference of squares formula states that \(x^2 - y^2 = (x - y)(x + y)\). We can apply this to both parts of the expression. - For \(b^2 - a^2\), we can write: \[ b^2 - a^2 = (b - a)(b + a) \] - For \(a^2 - b^2\), we can write: \[ a^2 - b^2 = (a - b)(a + b) = -(b - a)(a + b) \] 3. **Substitute back into the expression**: Now substituting these back into the original expression, we get: \[ (b - a)(b + a) - (-(b - a)(a + b)) \] This simplifies to: \[ (b - a)(b + a) + (b - a)(a + b) \] 4. **Factor out the common term**: Notice that \((b - a)\) is common in both terms: \[ (b - a)((b + a) + (a + b)) \] 5. **Combine like terms**: \[ (b - a)(2b) \] 6. **Final expression**: Thus, the final simplified expression is: \[ 2b(b - a) \] ### Final Answer: \[ 2b(b - a) \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN ONE VARIABLE

    RS AGGARWAL|Exercise TEST PAPER (Write True T and False F )|5 Videos
  • LINEAR EQUATIONS IN ONE VARIABLE

    RS AGGARWAL|Exercise TEST PAPER (choose the correct answer)|8 Videos
  • LINE SEGMENT, RAY AND LINE

    RS AGGARWAL|Exercise Exercise 11B|15 Videos
  • NUMBER SYSTEM

    RS AGGARWAL|Exercise TEST PAPER - 1 (D. Write T for the true and F for false in each of the following)|5 Videos

Similar Questions

Explore conceptually related problems

a^(2)-b^(2)+c^(2)-1+2b-2ac

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to 1) (2ab)/(a^(2)-b^(2)) 2) (-2ab)/(a^(2)-b^(2)) 3) (2ab)/(a^(2)+b^(2)) 4) (-2ab)/(a^(2)+b^(2))

af(x+1)+bf((1)/(x+1))=x,x!=-1,a!=b, then f(2) is equal to (2a)/(2(a^(2)-b^(2)))( b) (a)/(a^(2)-b^(2))(a+2b)/(a^(2)-b^(2)) (d) none of these

Simplify ((a^(2)+b^(2))/(a^(2)-b^(2))-(a^(2)-b^(2))/(a^(2)+b^(2)))/((a+b)/(a-b)-(a-b)/(a+b))

If : sin theta = (a^(2)-b^(2))/(a^(2)+b^(2)), "then" : cot theta= A) (4a^(2)b^(2))/(a^(2) -b^(2)) B) (a^(2) + b^(2))/(a^(2) - b^(2)) C) (4a^(2)b^(2))/(a^(2) + b^(2)) D)none of these.

Verify that (a ^(2) - b ^(2)) (a ^(2) + b ^(2)) + (b ^(2) - c ^(2)) (b ^(2) + c ^(2)) + (c ^(2)-a ^(2)) + (c ^(2) + a ^(2)) = 0

Area of the quadrilateral formed with the foci of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (x^(2))/(a^(2))-(y^(2))/(b^(2))=-1( a) 4(a^(2)+b^(2))( b) 2(a^(2)+b^(2))( c) (a^(2)+b^(2))(d)(1)/(2)(a^(2)+b^(2))

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

(a+sqrt(a^(2)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)))

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)